Active RIS Assisted Rate-Splitting Multiple Access Network: Spectral and Energy Efficiency Tradeoff

被引:28
|
作者
Niu, Hehao [1 ]
Lin, Zhi [2 ,3 ]
An, Kang [1 ]
Wang, Jiangzhou [4 ]
Zheng, Gan [5 ]
Al-Dhahir, Naofal [6 ]
Wong, Kai-Kit [7 ]
机构
[1] Natl Univ Def Technol, Res Inst 63, Nanjing 210007, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Engn, Hefei 230037, Peoples R China
[3] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau, Peoples R China
[4] Univ Kent, Sch Engn, Canterbury CT2 7NZ, England
[5] Univ Warwick, Sch Engn, Coventry CV4 7AL, England
[6] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
[7] UCL, Dept Elect & Elect Engn, London WC1E 6BT, England
基金
中国国家自然科学基金;
关键词
Optimization; Measurement; Wireless networks; Precoding; Power demand; NOMA; Hardware; Rate-splitting multiple access; RIS; active load; tradeoff; resource efficiency; MULTIUSER MISO SYSTEMS; WIRELESS NETWORKS; RATE MAXIMIZATION; POWER-CONTROL; SUM-RATE; INTELLIGENT; TRANSMISSION; OPTIMIZATION; ALLOCATION; SECURE;
D O I
10.1109/JSAC.2023.3240718
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the increasing demand of high data rate and massive access in both ultra-dense and industrial Internet-of-things networks, spectral efficiency (SE) and energy efficiency (EE) are regarded as two important and inter-related performance metrics for future networks. In this paper, we investigate a novel integration of rate-splitting multiple access (RSMA) and reconfigurable intelligent surface (RIS) into cellular systems to achieve a desirable tradeoff between SE and EE. Different from the commonly used passive RIS, we adopt reflection elements with active load to improve a newly defined metric, called resource efficiency (RE), which is capable of striking a balance between SE and EE. This paper focuses on the RE optimization by jointly designing the base station (BS) transmit precoding and RIS beamforming (BF) while guaranteeing the transmit and forward power budgets of the BS and RIS, respectively. To efficiently tackle the challenges for solving the RE maximization problem due to its fractional objective function, coupled optimization variables, and discrete coefficient constraint, the formulated nonconvex problem is solved by proposing a two-stage optimization framework. For the outer stage problem, a quadratic transformation is used to recast the fractional objective into a linear form, and a closed-form solution is obtained by using auxiliary variables. For the inner stage problem, the system sum rate is approximated into a linear function. Then, an alternating optimization (AO) algorithm is proposed to optimize the BS precoding and RIS BF iteratively, by utilizing the penalty dual decomposition (PDD) method. Simulation results demonstrate the superiority of the proposed design compared to other benchmarks.
引用
收藏
页码:1452 / 1467
页数:16
相关论文
共 50 条
  • [31] Rate-Splitting Multiple Access in a MISO SWIPT System Assisted by an Intelligent Reflecting Surface
    Camana, Mario R. R.
    Garcia, Carla E. E.
    Koo, Insoo
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2022, 6 (04): : 2084 - 2099
  • [32] Energy Efficiency Optimization for Rate-Splitting Multiple Access-Based Indoor Visible Light Communication Networks
    Xing, Fangyuan
    He, Shibo
    Leung, Victor C. M.
    Yin, Hongxi
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (05) : 1706 - 1720
  • [33] IRS-Assisted Rate-Splitting Multiple Access for Overloaded Multiuser MISO Transmission
    Elganimi, Taissir Y.
    Mahmodi, Hamza M.
    Almqadim, Hosam
    Rabie, Khaled M.
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 1504 - 1509
  • [34] Max-Min Fair RIS-Aided Rate-Splitting Multiple Access for Multigroup Multicast Communications
    Tiantian Li
    Haixia Zhang
    Shuaishuai Guo
    Dongfeng Yuan
    China Communications, 2023, 20 (01) : 184 - 198
  • [35] Network Slicing for eMBB, URLLC, and mMTC: An Uplink Rate-Splitting Multiple Access Approach
    Liu, Yuanwen
    Clerckx, Bruno
    Popovski, Petar
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (03) : 2140 - 2152
  • [36] Rate-Splitting Multiple Access-Based Cognitive Radio Network With ipSIC and CEEs
    Gao, Xuesong
    Li, Xingwang
    Han, Congzheng
    Zeng, Ming
    Liu, Hongwu
    Mumtaz, Shahid
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (01) : 1430 - 1434
  • [37] Rate-Splitting Multiple Access for URLLC Uplink in Physical Layer Network Slicing With eMBB
    Santos, Elco Joao Dos, Jr.
    Souza, Richard Demo
    Rebelatto, Joao Luiz
    IEEE ACCESS, 2021, 9 : 163178 - 163187
  • [38] Secure Rate-Splitting Multiple Access Transmissions in LMS Systems
    He, Minjue
    Zhao, Hui
    Miao, Xiaqing
    Wang, Shuai
    Pan, Gaofeng
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (01) : 19 - 23
  • [39] Rate-Splitting Multiple Access for Quantized Multiuser MIMO Communications
    Park, Seokjun
    Choi, Jinseok
    Park, Jeonghun
    Shin, Wonjae
    Clerckx, Bruno
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 7696 - 7711
  • [40] Potential impact of rate-splitting multiple access on cellular communications
    Rimoldi, B
    Li, Q
    IEEE GLOBECOM 1996 - COMMUNICATIONS THEORY MINI-CONFERENCE, CONFERENCE RECORD: COMMUNICATIONS: THE KEY TO GLOBAL PROSPERITY, 1996, : 178 - 182