Object Detection for Hazardous Material Vehicles Based on Improved YOLOv5 Algorithm

被引:7
|
作者
Zhu, Pengcheng [1 ]
Chen, Bolun [1 ,2 ]
Liu, Bushi [1 ]
Qi, Zifan [1 ]
Wang, Shanshan [1 ]
Wang, Ling [1 ]
机构
[1] Huaiyin Inst Technol, Fac Comp & Software Engn, Huaian 223003, Peoples R China
[2] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
基金
中国国家自然科学基金;
关键词
hazardous material vehicles; object detection; YOLOv5; attention mechanism; NETWORK;
D O I
10.3390/electronics12051257
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hazardous material vehicles are a non-negligible mobile source of danger in transport and pose a significant safety risk. At present, the current detection technology is well developed, but it also faces a series of challenges such as a significant amount of computational effort and unsatisfactory accuracy. To address these issues, this paper proposes a method based on YOLOv5 to improve the detection accuracy of hazardous material vehicles. The method introduces an attention module in the YOLOv5 backbone network as well as the neck network to achieve the purpose of extracting better features by assigning different weights to different parts of the feature map to suppress non-critical information. In order to enhance the fusion capability of the model under different sized feature maps, the SPPF (Spatial Pyramid Pooling-Fast) layer in the network is replaced by the SPPCSPC (Spatial Pyramid Pooling Cross Stage Partial Conv) layer. In addition, the bounding box loss function was replaced with the SIoU loss function in order to effectively speed up the bounding box regression and enhance the localization accuracy of the model. Experiments on the dataset show that the improved model has effectively improved the detection accuracy of hazardous chemical vehicles compared with the original model. Our model is of great significance for achieving traffic accident monitoring and effective emergency rescue.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A novel small object detection algorithm for UAVs based on YOLOv5
    Li, Jianzhuang
    Zhang, Yuechong
    Liu, Haiying
    Guo, Junmei
    Liu, Lida
    Gu, Jason
    Deng, Lixia
    Li, Shuang
    PHYSICA SCRIPTA, 2024, 99 (03)
  • [42] Object detection and localization algorithm in agricultural scenes based on YOLOv5
    Yang, Jiachen
    Han, Mengqi
    He, Jingyi
    Wen, Jiabao
    Chen, Desheng
    Wang, Yibo
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05) : 52402
  • [43] KPE-YOLOv5: An Improved Small Target Detection Algorithm Based on YOLOv5
    Yang, Rujin
    Li, Wenfa
    Shang, Xinna
    Zhu, Deping
    Man, Xunyu
    ELECTRONICS, 2023, 12 (04)
  • [44] YOLOv5-ASFF: A Multistage Strawberry Detection Algorithm Based on Improved YOLOv5
    Li, Yaodi
    Xue, Jianxin
    Zhang, Mingyue
    Yin, Junyi
    Liu, Yang
    Qiao, Xindan
    Zheng, Decong
    Li, Zezhen
    AGRONOMY-BASEL, 2023, 13 (07):
  • [45] GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
    Zhao, Yue
    Chen, Bolun
    Liu, Bushi
    Yu, Cuiying
    Wang, Ling
    Wang, Shanshan
    SENSORS, 2023, 23 (17)
  • [46] Railway fastener defect detection based on improved YOLOv5 algorithm
    Su, Zhitong
    Han, Kai
    Song, Wei
    Ning, Keqing
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1923 - 1927
  • [47] Research on Forest Fire Detection Algorithm Based on Improved YOLOv5
    Li, Jianfeng
    Lian, Xiaoqin
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (03): : 725 - 745
  • [48] An detection algorithm for golden pomfret based on improved YOLOv5 network
    Yu, Guoyan
    Luo, Yingtong
    Deng, Ruoling
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 1997 - 2004
  • [49] A rail fastener defect detection algorithm based on improved YOLOv5
    Wang, Ling
    Zang, Qiuyu
    Zhang, Kehua
    Wu, Lintong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2024, 238 (07) : 851 - 862
  • [50] Research on Improved Mask Detection Method Based on YOLOv5 Algorithm
    Duan, Bichong
    Ma, Mingtao
    Computer Engineering and Applications, 2023, 59 (16) : 223 - 231