Synchronization of phase oscillators on complex hypergraphs

被引:16
|
作者
Adhikari, Sabina [1 ]
Restrepo, Juan G. G. [1 ]
Skardal, Per Sebastian [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Trinity Coll, Dept Math, Hartford, CT 06106 USA
关键词
D O I
10.1063/5.0116747
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the effect of structured higher-order interactions on the collective behavior of coupled phase oscillators. By combining a hypergraph generative model with dimensionality reduction techniques, we obtain a reduced system of differential equations for the system's order parameters. We illustrate our framework with the example of a hypergraph with hyperedges of sizes 2 (links) and 3 (triangles). For this case, we obtain a set of two coupled nonlinear algebraic equations for the order parameters. For strong values of coupling via triangles, the system exhibits bistability and explosive synchronization transitions. We find conditions that lead to bistability in terms of hypergraph properties and validate our predictions with numerical simulations. Our results provide a general framework to study the synchronization of phase oscillators in hypergraphs, and they can be extended to hypergraphs with hyperedges of arbitrary sizes, dynamic-structural correlations, and other features.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] DESIGNING PHASE-LOCKED OSCILLATORS FOR SYNCHRONIZATION
    RICH, MA
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1974, CO22 (07) : 890 - 896
  • [42] Phase synchronization of nonidentical chaotic electrochemical oscillators
    Kiss, IZ
    Hudson, JL
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (12) : 2638 - 2647
  • [43] Data synchronization in a network of coupled phase oscillators
    Miyano, Takaya
    Tsutsui, Takako
    PHYSICAL REVIEW LETTERS, 2007, 98 (02)
  • [44] Data synchronization in a network of coupled phase oscillators
    Department of Micro System Technology, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
    不详
    不详
    Phys Rev Lett, 1600, 2
  • [45] PHASE SYNCHRONIZATION OF ROSSLER OSCILLATORS WITH PARAMETRIC EXCITATION
    Liu, Yong
    Ma, Jun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (18): : 3551 - 3560
  • [46] Phase synchronization in coupled oscillators: Dynamical manifestations
    Zheng, ZG
    Hu, G
    Hu, B
    CHINESE PHYSICS LETTERS, 2001, 18 (07) : 874 - 877
  • [47] Explosive transitions to synchronization in networks of phase oscillators
    I. Leyva
    A. Navas
    I. Sendiña-Nadal
    J. A. Almendral
    J. M. Buldú
    M. Zanin
    D. Papo
    S. Boccaletti
    Scientific Reports, 3
  • [48] Phase synchronization in doubly driven chaotic oscillators
    Gao, J
    Zheng, ZG
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (20-21): : 2945 - 2952
  • [49] Stochastic synchronization in globally coupled phase oscillators
    Sakaguchi, H
    PHYSICAL REVIEW E, 2002, 66 (05): : 5 - 056129
  • [50] Synchronization and clustering of phase oscillators with heterogeneous coupling
    Paissan, G. H.
    Zanette, D. H.
    EPL, 2007, 77 (02)