Insight into the active sites of M-N-C single-atom catalysts for electrochemical CO2 reduction

被引:18
|
作者
Pan, Qin [1 ]
Chen, Yang [1 ]
Jiang, Shuoshuo [1 ]
Cui, Xin [1 ]
Ma, Guanghuan [1 ]
Ma, Tianyi [2 ]
机构
[1] Liaoning Univ, Coll Chem, Inst Clean Energy Chem, Shenyang 110036, Peoples R China
[2] RMIT Univ, Sch Sci, Melbourne, Vic 3000, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Single-atom catalysts; Active site; M-N-C materials; Electrocatalysis; Carbon dioxide reduction; EFFICIENT ELECTROCATALYTIC CO2; ATOMICALLY DISPERSED FE; CARBON NANOSHEETS; COORDINATION ENVIRONMENT; ELECTROREDUCTION; NITROGEN; CONVERSION; FRAMEWORK; ELECTRO;
D O I
10.1016/j.enchem.2023.100114
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical carbon dioxide reduction (CO2RR) to chemicals and fuels is a promising way to alleviate global environmental problems and energy issues. Among the various catalysts, metal-nitrogen-carbon (M-N-C) single -atom catalysts (SACs) have intrigued great excitement in catalysis due to their low cost and high efficiency. However, precisely identifying the active site structure at an atomic level and disclosing the structure -performance relationship remains a grand challenge. In this review, the active structures of the M-N-C cata-lysts in CO2RR are first summarized, including isolated metal-Nx (x = 2, 3, 4, 5) sites, dual-metal centers, and the crucial role of substrates. Subsequently, the role of active structure in changing the adsorption properties of reactants toward CO2RR is discussed. In particular, the structure-performance relationship and constructive strategies to optimize the CO2RR pathway are highlighted. Finally, challenges and potential outlooks for the development of M-N-C SACs toward CO2RR are presented.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Atomic Tuning of Single-Atom Fe-N-C Catalysts with Phosphorus for Robust Electrochemical CO2 Reduction
    Li, Ke
    Zhang, Shengbo
    Zhang, Xiuli
    Liu, Shuang
    Jiang, Haosong
    Jiang, Taoli
    Shen, Chunyue
    Yu, Yi
    Chen, Wei
    NANO LETTERS, 2022, 22 (04) : 1557 - 1565
  • [12] Advances in spin regulation of M-N-C single-atom catalysts and their applications in electrocatalysis
    Cui, Jiayi
    Yu, Xintao
    Li, Xueyao
    Yu, Jianmin
    Peng, Lishan
    Wei, Zidong
    CHINESE JOURNAL OF CATALYSIS, 2025, 69 : 17 - 34
  • [13] Transient Dangling Active Sites of Fe(III)-N-C Single-Atom Catalyst for Efficient Electrochemical CO2 Reduction Reaction
    Qiu, Yun-Ze
    Liu, Xiao-Meng
    Li, Wenying
    Li, Jun
    Xiao, Hai
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [14] Recent Design Strategies for M-N-C Single-Atom Catalysts in Oxygen Reduction: An Entropy Increase Perspective
    Yan, Wei
    Chen, Wenmiao
    Chen, Yanli
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (36)
  • [15] Single-atom catalysis for electrochemical CO2 reduction
    Jia, Mingwen
    Fan, Qun
    Liu, Shizhen
    Qiu, Jieshan
    Sun, Zhenyu
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 1 - 6
  • [16] S and N coordinated single-atom catalysts for electrochemical CO2 reduction with superior activity and selectivity
    Hou, Pengfei
    Huang, Yuhong
    Ma, Fei
    Wei, Xiumei
    Du, Ruhai
    Zhu, Gangqiang
    Zhang, Jianmin
    Wang, Min
    APPLIED SURFACE SCIENCE, 2023, 619
  • [17] Structure-Performance Descriptors and the Role of the Axial Oxygen Atom on M-N4-C Single-Atom Catalysts for Electrochemical CO2 Reduction
    Wang, Jing
    Zheng, Mingyue
    Zhao, Xian
    Fan, Weiliu
    ACS CATALYSIS, 2022, 12 (09): : 5441 - 5454
  • [18] Electrochemical carbonyl reduction on single-site M-N-C catalysts
    Ju, Wen
    Bagger, Alexander
    Saharie, Nastaran Ranjbar
    Moehle, Sebastian
    Wang, Jingyi
    Jaouen, Frederic
    Rossmeisl, Jan
    Strasser, Peter
    COMMUNICATIONS CHEMISTRY, 2023, 6 (01)
  • [19] Optimal Distribution of Active Sites of CO2 Reduction Reaction Catalyzed by Diatomic Site M-N-C
    Zhou Ying
    He Peinan
    Feng Haisong
    Zhang Xin
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (02):
  • [20] Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction
    Gu, Huoliang
    Wu, Jing
    Zhang, Liming
    NANO RESEARCH, 2022, 15 (11) : 9747 - 9763