Digital-Twin-Assisted Resource Allocation for Network Slicing in Industry 4.0 and Beyond Using Distributed Deep Reinforcement Learning

被引:15
|
作者
Tang, Lun [1 ,2 ]
Du, Yucong [1 ,2 ]
Liu, Qinghai [1 ,2 ]
Li, Jinyu [1 ,2 ]
Li, Shirui [1 ,2 ]
Chen, Qianbin [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Mobile Commun, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Digital twin network (DTN); Industry 4.0 and Beyond; Industry Internet of Things; prioritized experience replay (PER); resource allocation; service equilibrium; TRANSPORTATION;
D O I
10.1109/JIOT.2023.3274163
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Personalization is one of the primary emerging trends in Industry 4.0 and Beyond. Highly personalized services will present a significant challenge to the existing algorithms for network slicing (NS) and resource allocation, leading to issues, such as nonequilibratory resource allocation, in which some services are sacrificed for the maximum total reward of the algorithm, excessive cost, and slow algorithm convergence. A digital twin network (DTN) is offered as a novel solution to the challenges listed above. By integrating the DTN and IIoT NS, we propose a DTN-assisted industry Internet of Things NS (DTN-IIoT NS) architecture for personalized IIoT services in Industry 4.0 and Beyond. The DTN-IIoT NS architecture consists of three layers, three modules, and two closed loops. On the basis of the aforementioned architecture, we focus on the resource allocation process in DTN-IIoT NS, model the DT-assisted resource allocation for highly personalized IIoT services, propose the service equilibrium rate, and formulate the optimization problem aiming at maximizing the equilibrium rate weighted net profit of network providers. Then, we propose a dual-channel weighted (DCW) Critic network for service equilibrium in DTN-IIoT NS resource allocation and the matching Improved prioritized experience replay (PER) to enhance convergent speed. In addition, we present a distributed DT-assisted DCW-PER multiagent deep deterministic policy gradient (PER-DCW MADDPG) algorithm for the resource allocation process in DTN-IIoT NS. Simulation results indicate that the PER-DCW MADDPG algorithm can produce a better service equilibrium and accelerate the convergence speed of the algorithm.
引用
收藏
页码:16989 / 17006
页数:18
相关论文
共 50 条
  • [21] Digital-Twin-Assisted Edge-Computing Resource Allocation Based on the Whale Optimization Algorithm
    Qiu, Shaoming
    Zhao, Jiancheng
    Lv, Yana
    Dai, Jikun
    Chen, Fen
    Wang, Yahui
    Li, Ao
    SENSORS, 2022, 22 (23)
  • [22] Resource allocation for UAV-assisted 5G mMTC slicing networks using deep reinforcement learning
    Rohit Kumar Gupta
    Saubhik Kumar
    Rajiv Misra
    Telecommunication Systems, 2023, 82 : 141 - 159
  • [23] Deep Reinforcement Learning for Resource Management on Network Slicing: A Survey
    Hurtado Sanchez, Johanna Andrea
    Casilimas, Katherine
    Caicedo Rendon, Oscar Mauricio
    SENSORS, 2022, 22 (08)
  • [24] Resource allocation for UAV-assisted 5G mMTC slicing networks using deep reinforcement learning
    Gupta, Rohit Kumar
    Kumar, Saubhik
    Misra, Rajiv
    TELECOMMUNICATION SYSTEMS, 2023, 82 (01) : 141 - 159
  • [25] Smart Jamming Attack and Mitigation on Deep Transfer Reinforcement Learning Enabled Resource Allocation for Network Slicing
    Salehi, Shavbo
    Zhou, Hao
    Elsayed, Medhat
    Bavand, Majid
    Gaigalas, Raimundas
    Ozcan, Yigit
    Erol-Kantarci, Melike
    arXiv,
  • [26] Resource allocation for network slicing in dynamic multi-tenant networks: A deep reinforcement learning approach
    Xie, Yanghao
    Kong, Yuyang
    Huang, Lin
    Wang, Sheng
    Xu, Shizhong
    Wang, Xiong
    Ren, Jing
    COMPUTER COMMUNICATIONS, 2022, 195 : 476 - 487
  • [27] Two-Tier Resource Allocation for Multitenant Network Slicing: A Federated Deep Reinforcement Learning Approach
    Ou, Ruijie
    Sun, Guolin
    Ayepah-Mensah, Daniel
    Boateng, Gordon Owusu
    Liu, Guisong
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (22) : 20174 - 20187
  • [28] Dynamic Network Slicing using Deep Reinforcement Learning
    Kumar, Swaraj
    Vankayala, Satya Kumar
    Singh, Devashish
    Roy, Ishaan
    Sahoo, Biswa P. S.
    Yoon, Seungil
    Kanakaraj, Ignatius Samuel
    2021 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (IEEE ANTS), 2021,
  • [29] Federated Deep Reinforcement Learning for Resource Allocation in O-RAN Slicing
    Zhang, Han
    Zhou, Hao
    Erol-Kantarci, Melike
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 958 - 963
  • [30] Network Slicing via Transfer Learning aided Distributed Deep Reinforcement Learning
    Hu, Tianlun
    Liao, Qi
    Liu, Qiang
    Carle, Georg
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2909 - 2914