Deep-learning-based isolation of perturbation-induced variations in single-cell data

被引:0
|
作者
Weinberger, Ethan [1 ]
Lee, Su-In [1 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
关键词
D O I
10.1038/s41592-023-01956-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell perturbation screens are routinely conducted to study the effects of different perturbations on cellular state, yet such studies are easily confounded by nuisance sources of variation shared with control cells. We present a deep learning method that isolates perturbation-specific sources of variation, enabling a better understanding of the perturbation's effects.
引用
收藏
页码:1287 / 1288
页数:2
相关论文
共 50 条
  • [21] Batch alignment of single-cell transcriptomics data using deep metric learning
    Yu, Xiaokang
    Xu, Xinyi
    Zhang, Jingxiao
    Li, Xiangjie
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [22] Batch alignment of single-cell transcriptomics data using deep metric learning
    Xiaokang Yu
    Xinyi Xu
    Jingxiao Zhang
    Xiangjie Li
    Nature Communications, 14
  • [23] Deep learning for inferring gene relationships from single-cell expression data
    Yuan, Ye
    Bar-Joseph, Ziv
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) : 27151 - 27158
  • [24] Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review
    Brendel, Matthew
    Su, Chang
    Bai, Zilong
    Zhang, Hao
    Elemento, Olivier
    Wang, Fei
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2022, 20 (05) : 814 - 835
  • [25] VSD genetic diagnosis exploiting single-cell expression data and deep learning
    von der Decken, Isabel
    Azimi, Hamid
    Lauber-Biason, Anna
    HORMONE RESEARCH IN PAEDIATRICS, 2022, 95 (SUPPL 2): : 561 - 562
  • [26] Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
    Yu, Lijia
    Liu, Chunlei
    Yang, Jean Yee Hwa
    Yang, Pengyi
    BIOINFORMATICS, 2023, 39 (06)
  • [27] Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review
    Matthew Brendel
    Chang Su
    Zilong Bai
    Hao Zhang
    Olivier Elemento
    Fei Wang
    Genomics,Proteomics & Bioinformatics, 2022, (05) : 814 - 835
  • [28] DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data
    Maseda, Floyd
    Cang, Zixuan
    Nie, Qing
    FRONTIERS IN GENETICS, 2021, 12
  • [29] Evaluation of deep learning-based feature selection for single-cell RNA sequencing data analysis
    Hao Huang
    Chunlei Liu
    Manoj M. Wagle
    Pengyi Yang
    Genome Biology, 24
  • [30] A model-based constrained deep learning clustering approach for spatially resolved single-cell data
    Lin, Xiang
    Gao, Le
    Whitener, Nathan
    Ahmed, Ashley
    Wei, Zhi
    GENOME RESEARCH, 2022, 32 (10) : 1906 - 1917