Deep-learning-based isolation of perturbation-induced variations in single-cell data

被引:0
|
作者
Weinberger, Ethan [1 ]
Lee, Su-In [1 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
关键词
D O I
10.1038/s41592-023-01956-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell perturbation screens are routinely conducted to study the effects of different perturbations on cellular state, yet such studies are easily confounded by nuisance sources of variation shared with control cells. We present a deep learning method that isolates perturbation-specific sources of variation, enabling a better understanding of the perturbation's effects.
引用
收藏
页码:1287 / 1288
页数:2
相关论文
共 50 条
  • [2] Fisheye transformation enhances deep-learning-based single-cell phenotyping by including cellular microenvironment
    Toth, Timea
    Bauer, David
    Sukosd, Farkas
    Horvath, Peter
    CELL REPORTS METHODS, 2022, 2 (12):
  • [3] Deep learning shapes single-cell data analysis
    Qin Ma
    Dong Xu
    Nature Reviews Molecular Cell Biology, 2022, 23 : 303 - 304
  • [4] A Fusion Learning Model Based on Deep Learning for Single-Cell RNA Sequencing Data Clustering
    Qiao, Tian-Jing
    Li, Feng
    Yuan, Sha-Sha
    Dai, Ling-Yun
    Wang, Juan
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2024, 31 (06) : 576 - 588
  • [5] Deep learning shapes single-cell data analysis COMMENT
    Ma, Qin
    Xu, Dong
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (05) : 303 - 304
  • [6] Deep learning training dynamics analysis for single-cell data
    Karin, Jonathan
    Mintz, Reshef
    NATURE COMPUTATIONAL SCIENCE, 2024, : 886 - 887
  • [7] scPerturb: harmonized single-cell perturbation data
    Peidli, Stefan
    Green, Tessa D.
    Shen, Ciyue
    Gross, Torsten
    Min, Joseph
    Garda, Samuele
    Yuan, Bo
    Schumacher, Linus J.
    Taylor-King, Jake P.
    Marks, Debora S.
    Luna, Augustin
    Bluethgen, Nils
    Sander, Chris
    NATURE METHODS, 2024, 21 (03) : 531 - 540
  • [8] scPerturb: harmonized single-cell perturbation data
    Stefan Peidli
    Tessa D. Green
    Ciyue Shen
    Torsten Gross
    Joseph Min
    Samuele Garda
    Bo Yuan
    Linus J. Schumacher
    Jake P. Taylor-King
    Debora S. Marks
    Augustin Luna
    Nils Blüthgen
    Chris Sander
    Nature Methods, 2024, 21 : 531 - 540
  • [9] Data augmentation for deep-learning-based electroencephalography
    Lashgari, Elnaz
    Liang, Dehua
    Maoz, Uri
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 346
  • [10] Deep Learning in Single-cell Analysis
    Molho, Dylan
    Ding, Jiayuan
    Tang, Wenzhuo
    Li, Zhaoheng
    Wen, Hongzhi
    Wang, Yixin
    Venegas, Julian
    Jin, Wei
    Liu, Renming
    Su, Runze
    Danaher, Patrick
    Yang, Robert
    Lei, Yu Leo
    Xie, Yuying
    Tang, Jiliang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)