A Privacy-Preserving and Edge-Collaborating Architecture for Personalized Mobility

被引:0
|
作者
Jian, Weitao [1 ,2 ]
He, Junshu [1 ,2 ]
Chen, Jiatao [1 ,2 ]
Cai, Ming [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510006, Peoples R China
[2] Guangdong Key Lab Intelligent Transportat Syst ITS, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
RECOMMENDATION; INFORMATION; NETWORKS; TIME;
D O I
10.1155/2023/8333560
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Driven by technologies and demands, the modern transportation system has developed from intelligent transportation systems (ITS) to autonomous transportation systems (ATS) to resolve intertwined demands and supplies with few human interventions. In ATS, personal mobility service (PMS) is the service that can sense real-time traffic conditions comprehensively, learn travelers' preferences accurately, recommend multimodal travel options appropriately, and provide service responses timely to elevate the level of personalization and intelligence in smart mobility services. Since current PMS widely employs centralized approaches (CPMS) to process massive sensitive data from individuals and support diverse edge devices, resulting in high pressure in privacy protection and performance balancing, this paper presents a federated PMS (FPMS) and its design architecture in logical and physical views by adopting federated learning to provide multimodal, dynamic, and personalized travel options with system-saving safety and efficiency guaranteed. Moreover, through an extensive evaluation, the performances of CPMS and FPMS are compared to reveal the merits of FPMS in reducing costs and latency.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Mobility-Aware Privacy-Preserving Mobile Crowdsourcing
    Qiu, Guoying
    Shen, Yulong
    Cheng, Ke
    Liu, Lingtong
    Zeng, Shuiguang
    SENSORS, 2021, 21 (07)
  • [32] Privacy-Preserving Mobility-Casting in Opportunistic Networks
    Costantino, Gianpiero
    Martinelli, Fabio
    Santi, Paolo
    2014 TWELFTH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST (PST), 2014, : 10 - 18
  • [33] A Privacy-Preserving Mechanism Based on Local Differential Privacy in Edge Computing
    Bi, Mengnan
    Wang, Yingjie
    Cai, Zhipeng
    Tong, Xiangrong
    CHINA COMMUNICATIONS, 2020, 17 (09) : 50 - 65
  • [34] PASTEL: Privacy-Preserving Federated Learning in Edge Computing
    Elhattab, Fatima
    Bouchenak, Sara
    Boscher, Cedric
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (04):
  • [35] SCLERA: A Framework for Privacy-Preserving MLaaS at the Pervasive Edge
    Kumar, Abhinav
    Tourani, Reza
    Vij, Mona
    Srikanteswara, Srikathyayani
    2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2022,
  • [36] Lightweight Privacy-Preserving Equality Query in Edge Computing
    Wu, Qiyu
    Zhou, Fucai
    Xu, Jian
    Feng, Da
    Li, Bao
    IEEE ACCESS, 2019, 7 : 182588 - 182599
  • [37] Adaptive personalized privacy-preserving data collection scheme with local differential privacy
    Song, Haina
    Shen, Hua
    Zhao, Nan
    He, Zhangqing
    Xiong, Wei
    Wu, Minghu
    Zhang, Mingwu
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (04)
  • [38] PPeFL: Privacy-Preserving Edge Federated Learning With Local Differential Privacy
    Wang, Baocang
    Chen, Yange
    Jiang, Hang
    Zhao, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15488 - 15500
  • [39] Semantic Privacy-Preserving for Video Surveillance Services on the Edge
    Huang, Alexander Y. C.
    Chen, Yitao
    Huang, Dijiang
    Zhao, Ming
    2023 IEEE/ACM SYMPOSIUM ON EDGE COMPUTING, SEC 2023, 2023, : 300 - 305
  • [40] Lightweight Privacy-Preserving Medical Diagnosis in Edge Computing
    Ma, Zhuoran
    Ma, Jianfeng
    Miao, Yinbin
    Liu, Ximeng
    Choo, Kim-Kwang Raymond
    Yang, Ruikang
    Wang, Xiangyu
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (03) : 1606 - 1618