Parametrization of the mechanically induced self-propagating high-temperature synthesis (MI-SHS) of Ti5Si3

被引:4
|
作者
Juarez-Arellano, E. A. [1 ]
Martinez-Garcia, A. [1 ]
Winkler, B. [2 ]
Perez-Lopez, T. [3 ]
Padilla, J. M. [4 ]
机构
[1] Univ Papaloapan, Ctr Invest Cient, Inst Quim Aplicada, Circuito Cent 200,Parque Ind, Oaxaca 68301, Mexico
[2] Goethe Univ Frankfurt, Inst Geowissensch Kristallog Mineral, Altenhoferallee 1, D-60438 Frankfurt, Germany
[3] Univ Autonoma Campeche, Ctr Invest Corros, Ave Heroe Nacozari 480, Campeche 24079, Campeche, Mexico
[4] Univ Tecnol Ctr Veracruz, Area Tecnol,Ave Univ Carretera Fed Cuitlahuac La T, Cuitlahuac 94910, Veracruz, Mexico
关键词
Ti5Si3; Intermetallic compounds; MI-SHS; High-energy ball-milling; Mechanochemistry; Parametrization; SHOCK-WAVE SYNTHESIS; TITANIUM SILICIDE; COMBUSTION SYNTHESIS; MICROSTRUCTURE; SI; SYSTEM; MASHS; ENERGY;
D O I
10.1016/j.ceramint.2022.09.203
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mechanically activated self-propagating high-temperature synthesis (MA-SHS) is one of the most used methodologies to synthesize titanium silicides, especially Ti5Si3. However, the problem in this methodology is to know the milling conditions needed to mechanically activate (MA) or mechanically induce (MI) the reaction of the starting materials. This information is fundamental for obtaining reproducible results. Therefore, the parametrization of the mechanically induced self-propagating high-temperature synthesis (MI-SHS) of Ti5Si3 is explored in the present study. A simple kinematic approach is used to parametrise the mechanically induced reaction as a function of the milling parameters, such as the angular velocity of the mill and the grinding time. The accumulated and transferred energy per hit needed to induce the MI-SHS of Ti5Si3 are predicted. A kinetic approach that allows the complete parametrization of mechanically induced reactions is also used.
引用
收藏
页码:2350 / 2358
页数:9
相关论文
共 50 条
  • [1] Self-propagating High-temperature Synthesis of Ti5Si3/TiAl3 Intermetallics
    Zha, M.
    Wang, H. Y.
    Lue, S. J.
    Zhang, N.
    Li, D.
    Jiang, Q. C.
    ISIJ INTERNATIONAL, 2009, 49 (03) : 453 - 457
  • [2] In-situ neutron diffraction of titanium silicide, Ti5Si3, during self-propagating high-temperature synthesis (SHS)
    Riley, DP
    Oliver, CP
    Kisi, EH
    INTERMETALLICS, 2006, 14 (01) : 33 - 38
  • [3] Influence of Cu addition on the self-propagating high-temperature synthesis of Ti5Si3 in Cu-Ti-Si system
    Wang, H. Y.
    Lue, S. J.
    Zha, M.
    Li, S. T.
    Liu, C.
    Jiang, Q. C.
    MATERIALS CHEMISTRY AND PHYSICS, 2008, 111 (2-3) : 463 - 468
  • [4] Effect of Fe addition on self-propagating high-temperature synthesis of Ti5Si3 in Fe-Ti-Si system
    Guan, Q. L.
    Wang, H. Y.
    Li, S. L.
    Zhang, W. N.
    Lue, S. J.
    Jiang, Q. C.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 456 (1-2) : 79 - 84
  • [5] Effect of substitution of Si by Al on microstructure and synthesis behavior of Ti5Si3 based alloys fabricated by mechanically activated self-propagating high-temperature synthesis
    Kasraee, Kian
    Tayebifard, Ali
    Salahi, Esmaeil
    ADVANCED POWDER TECHNOLOGY, 2014, 25 (03) : 885 - 890
  • [6] Formation of Ti5Si3 and V5Si3 by self-propagating high-temperature synthesis and evaluation of combustion wave kinetics
    Yeh, C. L.
    Hwang, P. W.
    Chen, Y. L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 714 : 567 - 571
  • [7] Self-Propagating High-Temperature Synthesis in the Ti–Al–Si System
    P. A. Lazarev
    A. E. Sytschev
    O. D. Boyarchenko
    A. V. Aborkin
    Inorganic Materials, 2021, 57 : 1201 - 1207
  • [8] Self-propagating high-temperature synthesis (SHS) of crystalline nanomaterials
    Huczko, A.
    Kurcz, M.
    Dabrowska, A.
    Baranowski, P.
    Bhattarai, A.
    Gierlotka, S.
    JOURNAL OF CRYSTAL GROWTH, 2014, 401 : 469 - 473
  • [9] SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS (SHS) OF COMPOSITE FERROALLOYS
    Shatokhin, I. M.
    Ziatdinov, M. Kh
    Manashev, I. R.
    Kartunov, A. D.
    Shiryaev, O. P.
    CIS IRON AND STEEL REVIEW, 2019, 18 : 52 - 57
  • [10] Self-Propagating High-Temperature Synthesis of Mechanically Activated Mixtures in Co–Ti–Al
    S. G. Vadchenko
    M. L. Busurina
    E. V. Suvorova
    N. I. Mukhina
    I. D. Kovalev
    A. E. Sychev
    Combustion, Explosion, and Shock Waves, 2021, 57 : 53 - 59