Study on turbocompound system for a heavy-duty diesel engine by combining matching analysis with experiments

被引:3
|
作者
Yong, Yin [1 ,2 ]
Wu Zhijun [1 ]
Zhao Rongchao [3 ]
Weilin, Zhuge [4 ]
Hu Zongjie [1 ]
机构
[1] Tongji Univ, Shanghai, Peoples R China
[2] Dongfeng Commercial Vehicle Co Ltd, Wuhan, Peoples R China
[3] South China Univ Technol, 381 Wushan Rd, Guangzhou 510640, Peoples R China
[4] Tsinghua Univ, Beijing, Peoples R China
关键词
Turbocompound system; heavy-duty diesel engine; variable geometry turbine; waste gate turbine; power turbine; LOW-PRESSURE TURBINE; RECOVERY;
D O I
10.1177/09544070221104350
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, to improve the fuel economy of long-haul commercial vehicles, the effects of turbocompound system matching on engine performance were numerically and experimentally studied. Firstly, a 1D GT-POWER simulation model of an 11 L heavy-duty diesel engine was established and verified by the experimental data. Secondly, the performances of the turbocompound engine matching with different sizes of fixed geometry turbine (FGT) and power turbines were analyzed. It was found that the exhaust energy distribution between the turbocharger turbine and power turbine had a significant impact on engine performance, and the size of the turbocharger turbine had a more noticeable impact than the power turbine. Based on the FGT turbocompound system simulation result, an appropriate variable geometry turbocharger (VGT) and three wastegate turbochargers (WGT) were selected for further simulation and experimental research. In addition, the impacts of the transmission ratio between the power turbine shaft and the engine crankshaft, and the fuel injection timing on the engine performance were experimentally studied. The engine test result showed that the fuel economy was improved by 1.6% under European Steady State (ESC) cycle while keeping the weighted NOx emission the same as the original engine. Finally, the turbocompound engine with WGT was installed on a heavy-duty long-haul commercial vehicle for road tests. The fuel economy of the vehicle was improved by 2.54% under the 80 km/h constant speed road test.
引用
收藏
页码:1775 / 1789
页数:15
相关论文
共 50 条
  • [31] Investigation of Small Pilot Combustion in a Heavy-Duty Diesel Engine
    Jorques Moreno C.
    Stenlaas O.
    Tunestal P.
    Jorques Moreno, Carlos (moreno.carlos.jorques@scania.com), 2017, SAE International (10) : 1193 - 1203
  • [32] Diesel Particle Filter and Fuel Effects on Heavy-Duty Diesel Engine Emissions
    Ratcliff, Matthew A.
    Dane, A. John
    Williams, Aaron
    Ireland, John
    Luecke, Jon
    McCormick, Robert L.
    Voorhees, Kent J.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (21) : 8343 - 8349
  • [33] EXPERIMENTAL STUDY ON THE EMISSION CHARACTERISTICS OF HEAVY-DUTY DIESEL ENGINE WITH COMBINATION SYSTEM OF DOC/DPF/SCR
    Chen, Xu
    Bai, Shuzhan
    Li, Guoxiang
    Wang, Guihua
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (06): : 4591 - 4597
  • [34] A study on the closed-loop control system for urea-SCR in heavy-duty diesel engine
    Hu, Jing
    Zhao, Yanguang
    Chen, Ting
    Chen, Zhen
    Zhang, Yunlong
    Shuai, Shijin
    Wang, Jianxin
    Qiche Gongcheng/Automotive Engineering, 2011, 33 (06): : 482 - 485
  • [35] Diesel Exhaust Aftertreatment System Packaging and Flow Optimization on a Heavy-Duty Diesel Engine Powered Vehicle
    Wetzel, Philip
    McCarthy, James Edward, Jr.
    Kulkarni, Milind
    Mohanta, Lokanath
    Griffin, Gregory
    SAE INTERNATIONAL JOURNAL OF COMMERCIAL VEHICLES, 2010, 3 (01) : 143 - 155
  • [36] Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system
    Feru, Emanuel
    Murgovski, Nikolce
    de Jager, Bram
    Willems, Frank
    CONTROL ENGINEERING PRACTICE, 2016, 54 : 190 - 201
  • [37] Testing of a Heavy Heavy-Duty Diesel Engine Schedule for Representative Measurement of Emissions
    Bedick, Clinton R.
    Clark, Nigel N.
    Zhen, Feng
    Atkinson, Richard J.
    McKain, David L.
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2009, 59 (08) : 960 - 971
  • [38] Multi-Dimensional Simulation on the Matching of Combustion Chamber And Injection Pressure for A Heavy-Duty Diesel Engine
    Yuan, Ye
    Li, Guoxiu
    Yu, Yusong
    Zhao, Peng
    Li, Hongmeng
    ELECTRICAL POWER & ENERGY SYSTEMS, PTS 1 AND 2, 2012, 516-517 : 623 - 627
  • [39] Hierarchical optimization of operational costs of a heavy-duty diesel engine and an exhaust aftertreatment system
    Geiselhart, Roman
    Bergmann, Daniel
    Niemeyer, Jens
    Remele, Joerg
    Graichen, Knut
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 1227 - 1232
  • [40] Development of combustion system of a low-emission heavy-duty diesel engine with EGR
    Zheng, Z.-Q. (zhengzunqing@tju.edu.cn), 2013, Chinese Society for Internal Combustion Engines (31):