Vacuum-Deposited Wide-Bandgap Perovskite for All-Perovskite Tandem Solar Cells

被引:23
|
作者
Chiang, Yu-Hsien [1 ]
Frohna, Kyle [1 ]
Salway, Hayden [2 ]
Abfalterer, Anna [1 ]
Pan, Linfeng [1 ]
Roose, Bart [2 ]
Anaya, Miguel [2 ]
Stranks, Samuel D. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
EFFICIENCY; TRIHALIDE;
D O I
10.1021/acsenergylett.3c00564
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-perovskite tandemsolar cells beckon as lower costalternativesto conventional single-junction cells. Solution processing has enabledrapid optimization of perovskite solar technologies, but new depositionroutes will enable modularity and scalability, facilitating technologyadoption. Here, we utilize 4-source vacuum deposition to deposit FA(0.7)Cs(0.3)Pb-(I x Br1-x )(3) perovskite, wherethe bandgap is changed through fine control over the halide content.We show how using MeO-2PACz as a hole-transporting material and passivatingthe perovskite with ethylenediammonium diiodide reduces nonradiativelosses, resulting in efficiencies of 17.8% in solar cells based onvacuum-deposited perovskites with a bandgap of 1.76 eV. By similarlypassivating a narrow-bandgap FA(0.75)Cs(0.25)Pb(0.5)Sn(0.5)I(3) perovskite and combining itwith a subcell of evaporated FA(0.7)Cs(0.3)Pb-(I0.64Br0.36)(3), we report a 2-terminalall-perovskite tandem solar cell with champion open circuit voltageand efficiency of 2.06 V and 24.1%, respectively. This dry depositionmethod enables high reproducibility, opening avenues for modular,scalable multijunction devices even in complex architectures.
引用
下载
收藏
页码:2728 / 2737
页数:10
相关论文
共 50 条
  • [21] Stable all-perovskite tandems with interfacial dipole-bridged inorganic wide-bandgap perovskite subcells
    Wenxiao Zhang
    Junfeng Fang
    Science China(Chemistry), 2023, 66 (09) : 2445 - 2446
  • [22] All-perovskite tandem solar cells gallop ahead
    Zhu, Jingwei
    Zhao, Dewei
    INNOVATION, 2023, 4 (05):
  • [23] Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers
    Xinhui Luo
    Tianhao Wu
    Yanbo Wang
    Xuesong Lin
    Hongzhen Su
    Qifeng Han
    Liyuan Han
    Science China Chemistry, 2021, 64 (02) : 218 - 227
  • [24] Stable all-perovskite tandems with interfacial dipole-bridged inorganic wide-bandgap perovskite subcells
    Wenxiao Zhang
    Junfeng Fang
    Science China Chemistry, 2023, 66 : 2445 - 2446
  • [25] Stable all-perovskite tandems with interfacial dipole-bridged inorganic wide-bandgap perovskite subcells
    Wenxiao Zhang
    Junfeng Fang
    Science China Chemistry, 2023, (09) : 2445 - 2446
  • [26] Stable all-perovskite tandems with interfacial dipole-bridged inorganic wide-bandgap perovskite subcells
    Zhang, Wenxiao
    Fang, Junfeng
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (09) : 2445 - 2446
  • [27] Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers
    Luo, Xinhui
    Wu, Tianhao
    Wang, Yanbo
    Lin, Xuesong
    Su, Hongzhen
    Han, Qifeng
    Han, Liyuan
    SCIENCE CHINA-CHEMISTRY, 2021, 64 (02) : 218 - 227
  • [28] Efficiency breakthrough for all-perovskite tandem solar cells
    Jiang, Tingming
    Yang, Yang
    SCIENCE CHINA-CHEMISTRY, 2020, 63 (03) : 294 - 295
  • [29] Efficiency breakthrough for all-perovskite tandem solar cells
    Tingming Jiang
    Yang Michael Yang
    Science China Chemistry, 2020, 63 : 294 - 295
  • [30] All-Perovskite Tandem Solar Cells Approach 26.5% Efficiency by Employing Wide Bandgap Lead Perovskite Solar Cells with New Monomolecular Hole Transport Layer
    Bi, Huan
    Liu, Jiaqi
    Zhang, Zheng
    Wang, Liang
    Beresneviciute, Raminta
    Tavgeniene, Daiva
    Kapil, Gaurav
    Ding, Chao
    Baranwal, Ajay Kumar
    Sahamir, Shahrir Razey
    Sanehira, Yoshitaka
    Segawa, Hiroshi
    Grigalevicius, Saulius
    Shen, Qing
    Hayase, Shuzi
    ACS ENERGY LETTERS, 2023, 8 (09) : 3852 - 3859