On the optimality of the Oja's algorithm for online PCA

被引:3
|
作者
Liang, Xin [1 ,2 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
基金
中国国家自然科学基金;
关键词
Principal component analysis; Stochastic approximation; High-dimensional data; Oja's algorithm; STOCHASTIC-APPROXIMATION; PRINCIPAL;
D O I
10.1007/s11222-023-10229-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we analyze the behavior of the Oja's algorithm for online/streaming principal component subspace estimation. It is proved that with high probability it performs an efficient, gap-free, global convergence rate to approximate an principal component subspace for any sub-Gaussian distribution. Moreover, it is the first time to show that the convergence rate, namely the upper bound of the approximation, exactly matches the lower bound of an approximation obtained by the offline/classical PCA up to a constant factor.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Convergence analysis for Oja plus MCA learning algorithm
    Lv, JC
    Ye, M
    Yi, Z
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 810 - 814
  • [32] OPTIMALITY AND SUB-OPTIMALITY OF PCA I: SPIKED RANDOM MATRIX MODELS
    Perry, Amelia
    Wein, Alexander S.
    Bandeira, Afonso S.
    Moitra, Ankur
    ANNALS OF STATISTICS, 2018, 46 (05): : 2416 - 2451
  • [34] AN ONLINE TENSOR ROBUST PCA ALGORITHM FOR SEQUENTIAL 2D DATA
    Zhang, Zemin
    Liu, Dehong
    Aeron, Shuchin
    Vetro, Anthony
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2434 - 2438
  • [35] Online matrix completion and online robust PCA
    Dept of ECE, Iowa State University, Ames
    IA
    50010, United States
    IEEE Int Symp Inf Theor Proc, (1826-1830):
  • [36] Statistical Optimality and Computational Efficiency of Nystrom Kernel PCA
    Sterge, Nicholas
    Sriperumbudur, Bharath K.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [37] Online Matrix Completion and Online Robust PCA
    Lois, Brian
    Vaswani, Namrata
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1826 - 1830
  • [38] Optimality of Robust Online Learning
    Guo, Zheng-Chu
    Christmann, Andreas
    Shi, Lei
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (05) : 1455 - 1483
  • [39] Lawler’s minmax cost algorithm: optimality conditions and uncertainty
    Nadia Brauner
    Gerd Finke
    Yakov Shafransky
    Dzmitry Sledneu
    Journal of Scheduling, 2016, 19 : 401 - 408
  • [40] Lawler's minmax cost algorithm: optimality conditions and uncertainty
    Brauner, Nadia
    Finke, Gerd
    Shafransky, Yakov
    Sledneu, Dzmitry
    JOURNAL OF SCHEDULING, 2016, 19 (04) : 401 - 408