Domain Knowledge Distillation and Supervised Contrastive Learning for Industrial Process Monitoring

被引:11
|
作者
Ai, Mingxi [1 ,2 ]
Xie, Yongfang [1 ]
Ding, Steven X. X. [2 ]
Tang, Zhaohui [1 ]
Gui, Weihua [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] Univ Duisburg Essen, Inst Automat Control & Complex Syst, D-47057 Duisburg, Germany
关键词
Feature extraction; Process monitoring; Deep learning; Knowledge engineering; Convolutional neural networks; Task analysis; Reliability; Hard negative; industrial process monitoring; knowledge distillation; memory queue-based negative sample augmentation; supervised contrastive learning; HANDCRAFTED FEATURES; IMAGE; FLOTATION;
D O I
10.1109/TIE.2022.3206696
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To ensure the reliability and safety of modern industrial process monitoring, computer vision-based soft measurement has received considerable attention due to its nonintrusive property. State-of-the-art computer vision-based approaches mostly rely on feature embedding from deep neural networks. However, this kind of feature extraction suffers from noise effects and limitation of labeled training instances, leading to unsatisfactory performance in real industrial process monitoring. In this article, we develop a novel hybrid learning framework for feature representation based on knowledge distillation and supervised contrastive learning. First, we attempt to transfer the abundant semantic information in handcrafted features to deep learning feature-based network by knowledge distillation. Then, to enhance the feature discrimination, supervised contrastive learning is proposed to contrast many positive pairs against many negative pairs per anchor. Meanwhile, two important mechanisms, memory queue-based negative sample augmentation and hard negative sampling, are added into the supervised contrastive learning model to assist the proper selection of negative samples. Finally, a flotation process monitoring problem is considered to illustrate and demonstrate the effectiveness of the proposed method.
引用
收藏
页码:9452 / 9462
页数:11
相关论文
共 50 条
  • [31] Adversarial supervised contrastive learning
    Li, Zhuorong
    Yu, Daiwei
    Wu, Minghui
    Jin, Canghong
    Yu, Hongchuan
    MACHINE LEARNING, 2023, 112 (06) : 2105 - 2130
  • [32] Category contrastive distillation with self-supervised classification
    Chen, Weiwei
    Xu, Jiazhen
    Zheng, Yujie
    Wang, Chong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [33] Adversarial supervised contrastive learning
    Zhuorong Li
    Daiwei Yu
    Minghui Wu
    Canghong Jin
    Hongchuan Yu
    Machine Learning, 2023, 112 : 2105 - 2130
  • [34] Representation Learning and Knowledge Distillation for Lightweight Domain Adaptation
    Bin Shah, Sayed Rafay
    Putty, Shreyas Subhash
    Schwung, Andreas
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1202 - 1207
  • [35] Supervised Spatially Contrastive Learning
    Nakashima, Kodai
    Kataoka, Hirokatsu
    Iwata, Kenji
    Suzuki, Ryota
    Satoh, Yutaka
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2022, 88 (01): : 66 - 71
  • [36] Weakly Supervised Contrastive Learning
    Zheng, Mingkai
    Wang, Fei
    You, Shan
    Qian, Chen
    Zhang, Changshui
    Wang, Xiaogang
    Xu, Chang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10022 - 10031
  • [37] Graph Structure Aware Contrastive Knowledge Distillation for Incremental Learning in Recommender Systems
    Wang, Yuening
    Zhang, Yingxue
    Coates, Mark
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3518 - 3522
  • [38] Knowledge Distillation for Single Image Super-Resolution via Contrastive Learning
    Liu, Cencen
    Zhang, Dongyang
    Qin, Ke
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 1079 - 1083
  • [39] Optimizing Upstream Representations for Out-of-Domain Detection with Supervised Contrastive Learning
    Wang, Bo
    Mine, Tsunenori
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2585 - 2595
  • [40] Weakly-Supervised Domain Adaptive Semantic Segmentation with Prototypical Contrastive Learning
    Das, Anurag
    Xian, Yongqin
    Dai, Dengxin
    Schiele, Bernt
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15434 - 15443