Bayesian estimation of fractional difference parameter in ARFIMA models and its application

被引:2
|
作者
Miyandoab, Masoud Fazlalipour [1 ]
Nasiri, Parviz [1 ]
Mosammam, Ali M. [2 ]
机构
[1] Payame Noor Univ PNU, Dept Stat, POB 19395 4697, Tehran, Iran
[2] Univ Zanjan, Dept Stat, Zanjan, Iran
关键词
Long -term memory; Bayesian estimation; Akaike information criterion; Fractional difference; LONG-MEMORY; TIME-SERIES; UNIT-ROOT; IDENTIFICATION; PERSISTENCE; INFERENCE; DESIGN; OUTPUT;
D O I
10.1016/j.ins.2023.01.108
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognizing and presenting the appropriate model is of particular importance to examine the statistical models for fitting time series data. Among time series models widely used in the analysis of economic, meteorological, geographical, and financial data is Auto Regressive Frac-tionally Integrated Moving Average (ARFIMA) model. In this model, and other time series models, the parameters of model are estimated by assuming that the average of data is constant. In this article, while investigating the behavior of ARFIMA model, Bayesian estimation of the fractional difference parameter (d) was presented considering the appropriate prior distribution. To check the efficiency of the proposed Bayesian estimation, using simulation and Akaike information criterion (AIC) it is shown that Bayesian estimation performs better compared to other methods. Finally, using a real data set and assuming a suitable prior distribution for the fractional differ-ence parameter (d), shows that ARFIMA (0, d,0) is a suitable model for these data. The goodness of fit of the ARFIMA model was evaluated according to the Bayesian estimation of parameters.
引用
收藏
页码:144 / 154
页数:11
相关论文
共 50 条
  • [21] Parameter estimation for the fractional Schrodinger equation using Bayesian method
    Zhang, Hui
    Jiang, Xiaoyun
    Fan, Wenping
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
  • [22] Stochastic optimization algorithms of a Bayesian design criterion for Bayesian parameter estimation of nonlinear regression models: Application in pharmacokinetics
    Merle, Y
    Mentre, F
    MATHEMATICAL BIOSCIENCES, 1997, 144 (01) : 45 - 70
  • [23] Efficient estimation method for generalized ARFIMA models
    Pandher, S. S.
    Hossain, S.
    Budsaba, K.
    Volodin, A.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (23) : 8515 - 8537
  • [24] A Bayesian approach to parameter estimation in HIV dynamical models
    Putter, H
    Heisterkamp, SH
    Lange, JMA
    de Wolf, F
    STATISTICS IN MEDICINE, 2002, 21 (15) : 2199 - 2214
  • [25] Bayesian parameter estimation for dynamical models in systems biology
    Linden, Nathaniel J.
    Kramer, Boris
    Rangamani, Padmini
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
  • [26] A hierarchical Bayesian approach for parameter estimation in HIV models
    Banks, HT
    Grove, S
    Hu, S
    Ma, YY
    INVERSE PROBLEMS, 2005, 21 (06) : 1803 - 1822
  • [27] On drift parameter estimation in models with fractional Brownian motion
    Kozachenko, Y.
    Melnikov, A.
    Mishura, Y.
    STATISTICS, 2015, 49 (01) : 35 - 62
  • [28] Bayesian estimation of panel data fractional response models with endogeneity: an application to standardized test rates
    Lawrence M. Kessler
    Murat K. Munkin
    Empirical Economics, 2015, 49 : 81 - 114
  • [29] Bayesian estimation of panel data fractional response models with endogeneity: an application to standardized test rates
    Kessler, Lawrence M.
    Munkin, Murat K.
    EMPIRICAL ECONOMICS, 2015, 49 (01) : 81 - 114
  • [30] Finite difference spectral approximation for the time-space fractional telegraph equation and its parameter estimation
    Yang, Xiu
    Jiang, Xiaoyun
    Zhang, Hui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6475 - 6489