Automated Identification and Segmentation of Ellipsoid Zone At-Risk Using Deep Learning on SD-OCT for Predicting Progression in Dry AMD

被引:12
|
作者
Kalra, Gagan [1 ]
Cetin, Hasan [1 ]
Whitney, Jon [1 ]
Yordi, Sari [1 ]
Cakir, Yavuz [1 ]
McConville, Conor [1 ]
Whitmore, Victoria [1 ]
Bonnay, Michelle [1 ]
Reese, Jamie L. [1 ]
Srivastava, Sunil K. [1 ]
Ehlers, Justis P. [1 ]
机构
[1] Cole Eye Inst, Tony & Leona Campane Ctr Excellence, Cleveland Clin, Image Guided Surg & Adv Imaging Res, Cleveland Hts, OH 44195 USA
关键词
ellipsoid zone integrity; photoreceptor damage; age-related macular degeneration; automated feature segmentation; deep learning; quantitative optical coherence tomography; geographic atrophy; progression prediction; clinical trial selection; OPTICAL COHERENCE TOMOGRAPHY; GEOGRAPHIC ATROPHY SECONDARY; MACULAR DEGENERATION; DISEASE; PREVALENCE;
D O I
10.3390/diagnostics13061178
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The development and testing of a deep learning (DL)-based approach for detection and measurement of regions of Ellipsoid Zone (EZ) At-Risk to study progression in nonexudative age-related macular degeneration (AMD). Methods: Used in DL model training and testing were 341 subjects with nonexudative AMD with or without geographic atrophy (GA). An independent dataset of 120 subjects were used for testing model performance for prediction of GA progression. Accuracy, specificity, sensitivity, and intraclass correlation coefficient (ICC) for DL-based EZ At-Risk percentage area measurement was calculated. Random forest-based feature ranking of EZ At-Risk was compared to previously validated quantitative OCT-based biomarkers. Results: The model achieved a detection accuracy of 99% (sensitivity = 99%; specificity = 100%) for EZ At-Risk. Automatic EZ At-Risk measurement achieved an accuracy of 90% (sensitivity = 90%; specificity = 84%) and the ICC compared to ground truth was high (0.83). In the independent dataset, higher baseline mean EZ At-Risk correlated with higher progression to GA at year 5 (p < 0.001). EZ At-Risk was a top ranked feature in the random forest assessment for GA prediction. Conclusions: This report describes a novel high performance DL-based model for the detection and measurement of EZ At-Risk. This biomarker showed promising results in predicting progression in nonexudative AMD patients.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Automated Macular OCT Retinal Surface Segmentation in Cases of Severe Glaucoma Using Deep Learning
    Xie, Hui
    Wang, Jui-Kai
    Kardon, Randy H.
    Garvin, Mona K.
    Wu, Xiaodong
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [32] Predicting At-Risk Students' Performance Based on LMS Activity using Deep Learning
    Al-Sulami, Amnah
    Al-Masre, Miada
    Al-Malki, Norah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1210 - 1220
  • [33] Predicting clinically significant glaucomatous visual field progression using deep learning on macular OCT
    Huang, Jonathan
    Galal, Galal
    Mukhin, Vladislav
    Etemadi, Mozziyar
    Tanna, Angelo
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [34] Automated geographic atrophy segmentation for SD-OCT images using region-based C-V model via local similarity factor
    Niu, Sijie
    de Sisternes, Luis
    Chen, Qiang
    Leng, Theodore
    Rubin, Daniel L.
    BIOMEDICAL OPTICS EXPRESS, 2016, 7 (02): : 581 - 600
  • [35] Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers
    Imon Banerjee
    Luis de Sisternes
    Joelle A. Hallak
    Theodore Leng
    Aaron Osborne
    Philip J. Rosenfeld
    Giovanni Gregori
    Mary Durbin
    Daniel Rubin
    Scientific Reports, 10
  • [36] Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers
    Banerjee, Imon
    de Sisternes, Luis
    Hallak, Joelle A.
    Leng, Theodore
    Osborne, Aaron
    Rosenfeld, Philip J.
    Gregori, Giovanni
    Durbin, Mary
    Rubin, Daniel
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [37] Automated Measurement of RNFL Thickness from OCT Scans Using a Deep Learning Segmentation Free Approach
    Chuter, Benton Gabriel
    Huynh, Justin
    Christopher, Mark
    Gonzalez, Ruben
    Walker, Evan
    Baxter, Sally L.
    Belghith, Akram
    Bowd, Christopher
    Goldbaum, Michael Henry
    Liebmann, Jeffrey M.
    Fazio, Massimo Antonio
    Girkin, Christopher A.
    Weinreb, Robert N.
    Zangwill, Linda M.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [38] Fully-Automated Drusen Segmentation in OCT using Deep Learning with Pyramid U-net
    Grechenig, Christoph
    Asgari, Fatemeh
    Gerendas, Bianca S.
    Waldstein, Sebastian M.
    Schlanitz, Ferdinand Georg
    Baratsits, Magdalena
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [39] A Deep Learning Model for Automated Segmentation of Geographic Atrophy Imaged Using Swept-Source OCT
    Pramil, Varsha
    de Sisternes, Luis
    Omlor, Lars
    Lewis, Warren
    Sheikh, Harris
    Chu, Zhongdi
    Manivannan, Niranchana
    Durbin, Mary
    Wang, Ruikang K.
    Rosenfeld, Philip J.
    Shen, Mengxi
    Guymer, Robyn
    Liang, Michelle C.
    Gregori, Giovanni
    Waheed, Nadia K.
    OPHTHALMOLOGY RETINA, 2023, 7 (02): : 127 - 141
  • [40] Using Quantitative Retinal SD-OCT Features to Predict Eyes at Risk of Fast Expansion of Geographic Atrophy in Dry Age-related Macular Degeneration
    Hammoud, Bassel
    Matar, Karen
    Cakir, Yavuz
    Amine, Reem
    Cetin, Hasan
    Kalra, Gagan
    Yordi, Sari
    Bonnay, Michelle
    Reese, Jamie
    Srivastava, Sunil K.
    Yu, Hannah
    Wykoff, Charles Clifton
    Ehlers, Justis
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)