Transient rheology in sea level change: Implications for Meltwater Pulse 1A

被引:7
|
作者
Lau, Harriet C. P. [1 ]
机构
[1] Brown Univ, Dept Earth Environm & Planetary Sci, 324 Brook St, Providence, RI 02912 USA
关键词
glacial isostatic adjustment; transient rheology; Meltwater Pulse 1A; viscoelasticity; sea level; GLACIAL-ISOSTATIC-ADJUSTMENT; AGE DATA SETS; MANTLE VISCOSITY; COLLAPSE; ANELASTICITY; DEGLACIATION; DISSIPATION; INFERENCES; BARBADOS; MODEL;
D O I
10.1016/j.epsl.2023.118106
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Ice mass and sea-level changes occur at many timescales inducing glacial isostatic adjustment (GIA). Typically, the solid Earth is treated as a Maxwell viscoelastic solid when predicting GIA at timescales from the peak of the ice age to present day (-21,000 yr before present). For events occurring at shorter (daily-centennial) timescales, the solid Earth is often treated as an elastic solid. Experimental results within the rock mechanics community indicate that transient deformation occurs at intermediate timescales, neither captured by a Maxwell or elastic mechanical model. With realistic, experimentally constrained viscoelastic models, we explore transient deformation in short-, intermediate-, and long-term GIA measurements, then turn to Meltwater Pulse 1A (MWP-1A). MWP-1A occurred -14,500 yr ago and represents an event during which global mean sea level rose by -20 m within a timespan of, at most, 500 yr. With newly computed transient deformation, sea-level change predictions deviate substationally (-1-2 m) from the Maxwell model at classic locations (Barbados, Sunda Shelf, Tahiti) that record MWP-1A sea level. These records are used to constrain the melt source of MWP-1A with important implications on ice sheet stability and the climate of a warming Earth. Our results suggest a timely need to revisit the source of MWP-1A and other analogous events.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条