MaxCut on permutation graphs is NP-complete

被引:0
|
作者
de Figueiredo, Celina M. H. [1 ]
de Melo, Alexsander A. [1 ]
Oliveira, Fabiano S. [2 ]
Silva, Ana [3 ]
机构
[1] Fed Univ Rio Janeiro, COPPE, Rio De Janeiro, Brazil
[2] Rio Janeiro State Univ, IME, Rio De Janeiro, Brazil
[3] Univ Fed Ceara, Dept Math, Fortaleza, CE, Brazil
关键词
computational complexity; maximum cut; NP-complete; permutation graphs;
D O I
10.1002/jgt.22948
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The decision problem MaxCut is known to be NP-complete since the seventies, but only recently its restriction to interval graphs has been announced to be hard by Adhikary, Bose, Mukherjee, and Roy. Building on their proof, in this paper we prove that the MaxCut problem is NP-complete on permutation graphs. This settles a long-standing open problem that appeared in the 1985 column of the Ongoing Guide to NP-completeness by David S. Johnson, and is the first NP-hardness entry for permutation graphs in such column.
引用
收藏
页码:5 / 16
页数:12
相关论文
共 50 条
  • [41] Generalized Pyramid is NP-Complete
    Iwamoto, Chuzo
    Matsui, Yuta
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (11) : 2462 - 2465
  • [42] DAG reversal is NP-complete
    Naumann, Uwe
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (04) : 402 - 410
  • [43] Properties of NP-complete sets
    Glasser, Christian
    Pavan, A.
    Selman, Alan L.
    Sengupta, Samik
    SIAM JOURNAL ON COMPUTING, 2006, 36 (02) : 516 - 542
  • [44] An NP-complete fragment of LTL
    Muscholl, A
    Walukiewicz, I
    DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2004, 3340 : 334 - 344
  • [45] NP-COMPLETE SCHEDULING PROBLEMS
    ULLMAN, JD
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1975, 10 (03) : 384 - 393
  • [46] DECIDING FRATTINI IS NP-COMPLETE
    RYTER, CH
    SCHMID, J
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1994, 11 (03): : 257 - 279
  • [47] A survey of NP-complete puzzles
    Kendall, Grahain
    Parkes, Andrew
    Spoerer, Kristian
    ICGA JOURNAL, 2008, 31 (01) : 13 - 34
  • [48] Properties of NP-complete sets
    Glasser, C
    Pavan, A
    Selman, AL
    Sengupta, S
    19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, : 184 - 197
  • [49] CROSSING NUMBER IS NP-COMPLETE
    GAREY, MR
    JOHNSON, DS
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (03): : 312 - 316
  • [50] Entropy for NP-complete problems
    Levchenkov, V.S.
    Doklady Akademii Nauk, 2001, 376 (02) : 175 - 178