Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties

被引:4
|
作者
Chen, Minzhi [1 ]
Quan, Qi
You, Zhenping
Dong, Yue
Zhou, Xiaoyan [1 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogel; Anti-freezing; Cellulose; INTERPENETRATING POLYMER NETWORK; TRANSPARENT; LIGHT; GELS;
D O I
10.1016/j.ijbiomac.2023.127396
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bioelectronics based on high-performance conductive ionic hydrogels, which can create novel technological interfaces with the human body, have attracted significant interest from both academia and industry. However, it is still a challenge to fabricate hydrogel sensor with integration of good mechanical properties, fast self-healing ability and flexible strain sensitivity below 0 degrees C. In this paper, we present a moldable, self-healing and adhesive cellulose-based ionic conductive hydrogel with strain-sensitivity, which was prepared by forming dualcrosslinked networks using poly(vinyl alcohol) (PVA) with borax, calcium chloride (CaCl2), zinc chloride (ZnCl2) and 2,2,6,6-tetramethylpiperidine-1-oxyl oxidized cellulose nanofibril (TCNF). The hydrogel exhibited fast self-healing within 10 s, moderate modulus of 5.13 kPa, high elongation rate of 1500 % and excellent adhesion behavior on various substrates. Due to multiple hydrogen bonding and the presence of CaCl2 and ZnCl2, the hydrogel presented a reduced freezing point as low as -41.1 degrees C, which enabled its application as a lowtemperature strain sensor. The proposed hydrogel provides a simple and facile method for fabricating multifunctional hydrogels that can be used as suitable strain sensors for applications such as wearable electronic sensor, soft robotics and electronic skins in a wide temperature range.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Simple preparation of carboxymethyl cellulose-based ionic conductive hydrogels for highly sensitive, stable and durable sensors
    Lu, Chunyin
    Qiu, Jianhui
    Sun, Manxi
    Liu, Qifan
    Sakai, Eiichi
    Zhang, Guohong
    CELLULOSE, 2021, 28 (07) : 4253 - 4265
  • [32] Simple preparation of carboxymethyl cellulose-based ionic conductive hydrogels for highly sensitive, stable and durable sensors
    Chunyin Lu
    Jianhui Qiu
    Manxi Sun
    Qifan Liu
    Eiichi Sakai
    Guohong Zhang
    Cellulose, 2021, 28 : 4253 - 4265
  • [33] A cellulose-based film with self-healing performance for light management
    Li, Shuang
    Cui, Boyu
    Jia, Xue
    Wang, Weihong
    Cui, Yutong
    Ding, Jiayan
    Fang, Yiqun
    Song, Yongming
    Zhang, Xianquan
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 212
  • [34] Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal-ligand bond interactions
    Hussain, Imtiaz
    Sayed, Sayed Mir
    Liu, Shunli
    Yao, Fang
    Oderinde, Olayinka
    Fu, Guodong
    EUROPEAN POLYMER JOURNAL, 2018, 100 : 219 - 227
  • [35] Highly Conductive, Stretchable, Adhesive, and Self-Healing Polymer Hydrogels for Strain and Pressure Sensor
    Yang, Chunying
    Yin, Jialin
    Chen, Zhuo
    Du, Haishun
    Tian, Minghua
    Zhang, Miaomiao
    Zheng, Jinxin
    Ding, Lan
    Zhang, Pengfei
    Zhang, Xinyu
    Deng, Kuilin
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (12)
  • [36] Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties
    Bai, Huihui
    Zhang, Zhixing
    Huo, Yajie
    Shen, Yongtao
    Qin, Mengmeng
    Feng, Wei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 98 : 169 - 176
  • [37] Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties
    Huihui Bai
    Zhixing Zhang
    Yajie Huo
    Yongtao Shen
    Mengmeng Qin
    Wei Feng
    Journal of Materials Science & Technology, 2022, 98 (03) : 169 - 176
  • [38] Effect of Polymerization Mode on Nanostructure and Properties of pH and Temperature Sensitive Cellulose-Based Hydrogels
    Jiang, Ping
    Chen, Shaowei
    Lv, Linda
    Ji, Hongmin
    Li, Gen
    Jiang, Zhechao
    Wu, Yiqiang
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2019, 11 (10) : 1417 - 1424
  • [39] Adhesive injectable cellulose-based hydrogels with rapid self-healing and sustained drug release capability for promoting wound healing
    Li, Lu
    Wang, Lixin
    Luan, Xinxin
    Pang, Yanjun
    Zhang, Kefeng
    Cheng, Yushuai
    Ji, Zhe
    Pang, Jinhui
    CARBOHYDRATE POLYMERS, 2023, 320
  • [40] Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor
    Shin, Sung-Ho
    Lee, Woojoo
    Kim, Seon-Mi
    Lee, Minkyung
    Koo, Jun Mo
    Hwang, Sung Yeon
    Oh, Dongyeop X.
    Park, Jeyoung
    CHEMICAL ENGINEERING JOURNAL, 2019, 371 : 452 - 460