Multiobjective optimization for flapping foil hydrodynamics with a multitask and multifidelity approach

被引:3
|
作者
Wang, Zhangyuan [1 ,5 ]
Yuan, Dehan [1 ,5 ]
Wu, Chenglong [2 ]
Chen, Xu [3 ]
Li, Ruipeng [4 ,6 ]
Cui, Weicheng [4 ,6 ]
Fan, Dixia [4 ,6 ]
机构
[1] Zhejiang Univ, Hangzhou 310027, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Astronaut, Nanjing 211106, Peoples R China
[3] China Ship Sci Res Ctr, Wuxi 214082, Peoples R China
[4] Westlake Univ, Sch Engn, Key Lab Coastal Environm & Resources Zhejiang Prov, Hangzhou 310030, Peoples R China
[5] Westlake Univ, Sch Engn, Hangzhou 310030, Peoples R China
[6] Westlake Inst Adv Study, Inst Adv Technol, Hangzhou 310024, Peoples R China
关键词
CARTESIAN-GRID SIMULATIONS; DISCRETE-VORTEX METHOD; PERFORMANCE; PREDICTION; MOTION; FLOWS;
D O I
10.1103/PhysRevE.109.015103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a multitask and multifidelity Gaussian process (MMGP) model to accurately predict and optimize the multiobjective performance of a flapping foil while minimizing the cost of high-fidelity data. Through a comparison of three kernels, we have selected and applied the spectral mixture kernel and validated the robustness and effectiveness of a multiacquisition function. To effectively incorporate data with varying levels of fidelity, we have adopted a linear prior formula-based multifidelity framework. Additionally, Bayesian optimization with a multiacquisition function is adopted by the MMGP model to enable multitask active learning. The results unequivocally demonstrate that the MMGP model serves as a highly capable and efficient framework for effectively addressing the multiobjective challenges associated with flapping foils.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Fuzzy approach for multiobjective optimization in magnetics
    Chiampi, M.
    Ragusa, C.
    Repetto, M.
    IEEE Transactions on Magnetics, 1996, 32 (3 /1): : 1234 - 1237
  • [32] A Multiobjective Optimization Approach for Market Timing
    Mohamed, Ismail
    Otero, Fernando E. B.
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 22 - 30
  • [33] Combustion engine optimization: a multiobjective approach
    Stefan Jakobsson
    Muhammad Saif-Ul-Hasnain
    Robert Rundqvist
    Fredrik Edelvik
    Björn Andersson
    Michael Patriksson
    Mattias Ljungqvist
    Dimitri Lortet
    Johan Wallesten
    Optimization and Engineering, 2010, 11 : 533 - 554
  • [34] Fuzzy approach for multiobjective optimization in magnetics
    Chiampi, M
    Ragusa, C
    Repetto, M
    IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (03) : 1234 - 1237
  • [35] A HYBRID APPROACH TO MULTIOBJECTIVE LINEAR OPTIMIZATION
    BUCHANAN, J
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1992, 43 (09) : 928 - 931
  • [36] A Collaborative Neurodynamic Approach to Multiobjective Optimization
    Leung, Man-Fai
    Wang, Jun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5738 - 5748
  • [37] Generalized homotopy approach to multiobjective optimization
    Hillermeier, C
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 110 (03) : 557 - 583
  • [38] Combustion engine optimization: a multiobjective approach
    Jakobsson, Stefan
    Saif-Ul-Hasnain, Muhammad
    Rundqvist, Robert
    Edelvik, Fredrik
    Andersson, Bjorn
    Patriksson, Michael
    Ljungqvist, Mattias
    Lortet, Dimitri
    Wallesten, Johan
    OPTIMIZATION AND ENGINEERING, 2010, 11 (04) : 533 - 554
  • [39] Generalized Homotopy Approach to Multiobjective Optimization
    C. Hillermeier
    Journal of Optimization Theory and Applications, 2001, 110 : 557 - 583
  • [40] A HYBRID APPROACH TO MULTIOBJECTIVE LINEAR OPTIMIZATION
    POH, KL
    QUADDUS, MA
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1990, 41 (11) : 1037 - 1048