Unraveling the Transformation from Type-II to Z-Scheme in Perovskite-Based Heterostructures for Enhanced Photocatalytic CO2 Reduction

被引:82
|
作者
Song, Wentao [1 ,2 ]
Chong, Kok Chan [1 ]
Qi, Guobin [1 ]
Xiao, Yukun [2 ,3 ]
Chen, Ganwen [2 ,3 ]
Li, Bowen [1 ]
Tang, Yufu [1 ]
Zhang, Xinyue [1 ,2 ]
Yao, Yingfang [4 ,5 ]
Lin, Zhiqun [1 ]
Zou, Zhigang [4 ,5 ]
Liu, Bin [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
[2] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Fuzhou 350207, Peoples R China
[3] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[4] Nanjing Univ, Coll Engn & Appl Sci, Ecomat & Renewable Energy Res Ctr ERERC, Nanjing 210093, Peoples R China
[5] Nanjing Univ, Dept Phys, Jiangsu Key Lab Nano Technol, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
新加坡国家研究基金会;
关键词
D O I
10.1021/jacs.3c12073
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to create perovskite-based heterostructures with desirable charge transfer characteristics represents an important endeavor to render a set of perovskite materials and devices with tunable optoelectronic properties. However, due to similar material selection and band alignment in type-II and Z-scheme heterostructures, it remains challenging to obtain perovskite-based heterostructures with a favorable electron transfer pathway for photocatalysis. Herein, we report a robust tailoring of effective charge transfer pathway in perovskite-based heterostructures via a type-II to Z-scheme transformation for highly efficient and selective photocatalytic CO2 reduction. Specifically, CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 heterostructures are synthesized and then investigated by ultrafast spectroscopy. Moreover, taking CsPbBr3/TiO2 and CsPbBr3/Au/TiO2 as examples, operando experiments and theoretical calculations confirm that the type-II heterostructure could be readily transformed into a Z-scheme heterostructure through establishing a low-resistance Ohmic contact, which indicates that a fast electron transfer pathway is crucial in Z-scheme construction, as further demonstrated by CsPbBr3/Ag/TiO2 and CsPbBr3/MoS2 heterostructures. In contrast to pristine CsPbBr3 and CsPbBr3/TiO2, the CsPbBr3/Au/TiO2 heterostructure exhibits 5.4- and 3.0-fold enhancement of electron consumption rate in photocatalytic CO2 reduction. DFT calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy unveil that the superior CO selectivity is attributed to the lower energy of *CO desorption than that of hydrogenation to *HCO. This meticulous design sheds light on the modification of perovskite-based multifunctional materials and enlightens conscious optimization of semiconductor-based heterostructures with desirable charge transfer for catalysis and optoelectronic applications.
引用
收藏
页码:3303 / 3314
页数:12
相关论文
共 50 条
  • [31] Constructing a Z-Scheme Heterojunction Photocatalyst of GaPO4/α-MoC/Ga2O3 without Mingling Type-II Heterojunction for CO2 Reduction to CO
    Liang, Xinxin
    Zhao, Jie
    Wang, Ting
    Zhang, Zexing
    Qu, Miao
    Wang, Chuanyi
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (28) : 33034 - 33044
  • [32] A Hierarchical Z-Scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity
    Jin, Jian
    Yu, Jiaguo
    Guo, Daipeng
    Cui, Can
    Ho, Wingkei
    SMALL, 2015, 11 (39) : 5262 - 5271
  • [33] Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO2 Reduction
    Wu, Tong
    Zhang, Lihua
    Zhan, Yinbo
    Dong, Yilin
    Tan, Zheng
    Zhou, Bowei
    Wei, Fei
    Zhang, Dongliang
    Long, Xia
    MOLECULES, 2023, 28 (24):
  • [34] Photocatalytic CO2 Reduction Using TiO2-Based Photocatalysts and TiO2 Z-Scheme Heterojunction Composites: A Review
    Rehman, Zia Ur
    Bilal, Muhammad
    Hou, Jianhua
    Butt, Faheem K.
    Ahmad, Junaid
    Ali, Saif
    Hussain, Asif
    MOLECULES, 2022, 27 (07):
  • [35] Photocatalytic CO2 reduction with water vapor to CO and CH4 in a recirculation reactor by Ag-Cu2O/TiO2 Z-scheme heterostructures
    Wang, Xiaoning
    Jiang, Zhilin
    Chen, Haowen
    Wang, Kang
    Wang, Xitao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896
  • [36] Enhanced photocatalytic CO2 reduction activity of Z-scheme CdS/BiVO4 nanocomposite with thinner BiVO4 nanosheets
    Wei, Zhi-He
    Wang, Yan-Fang
    Li, Yan-Yang
    Zhang, Lin
    Yao, Hong-Chang
    Li, Zhong-Jun
    JOURNAL OF CO2 UTILIZATION, 2018, 28 : 15 - 25
  • [37] Pathways towards a systematic development of Z-scheme photocatalysts for CO2 reduction
    Hezam, Abdo
    Peppel, Tim
    Strunk, Jennifer
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2023, 41
  • [38] Enhanced photocatalytic CO2 reduction activity on the novel Z-scheme Co-MOF/Bi2MoO6 to form CO and CH4
    Song, Shushan
    Song, Ziheng
    Han, Huarui
    Wei, Kai
    Zhang, Weijie
    Liu, Dandan
    Wang, Qianyu
    Ma, Changchang
    Feng, Sheng
    Duan, Xuemei
    APPLIED CATALYSIS A-GENERAL, 2024, 683
  • [39] Energy band modulating of NiO/BiOCl heterojunction with transition from type-II to S-scheme for enhancing photocatalytic CO2 reduction
    Wang, Kuan
    Sun, Tong
    Ma, Hui
    Wang, Yi
    He, Zhen-Hong
    Wang, Huan
    Wang, Weitao
    Yang, Yang
    Wang, Lei
    Liu, Zhao-Tie
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [40] Direct Z-scheme Sn-In2O3/In2S3 heterojunction nanostructures for enhanced photocatalytic CO2 reduction activity
    Ma, Yinyi
    Zhang, Zemin
    Jiang, Xiao
    Sun, Rongke
    Xie, Mingzheng
    Han, Weihua
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (11) : 3987 - 3997