Regulating lithium-ion transport route via adjusting lithium-ion affinity in solid polymer electrolyte

被引:10
|
作者
Zhang, Lei [1 ]
Cao, Shuang [2 ]
Zhang, Yang [1 ]
Zhang, Chaoyan [1 ]
Guo, Peng [1 ]
Song, Jianjun [1 ]
Jiang, Zhen [3 ]
Shi, Chuan [1 ]
机构
[1] Qingdao Univ, Coll Phys, Qingdao 266071, Peoples R China
[2] Qingdao Univ, Coll Chem & Chem Engn, Qingdao 266071, Peoples R China
[3] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
基金
中国国家自然科学基金;
关键词
Lithium metal battery; Solid polymer electrolytes; Lithium -ion transport route; Lithium -ion affinity; Solid state battery; COMPOSITE ELECTROLYTES;
D O I
10.1016/j.cej.2023.147764
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The competitive affinity of different components for lithium-ion (Li+) profoundly affects the ionic diffusion direction (namely Li+ migration route) in conductive filler-based solid polymer electrolytes (SPEs). In this work, a three-layer composite electrolyte is proposed in which a layer of PEO (polyvinyl epoxy)-LLZO (Li6.4La3Zr1.4Ta0.6O12) is sandwiched between two layers of polydopamine (PDA)-modified PEO interface (PMPI). We control the Li+ migration route in the organic matrix or inorganic filler by adjusting the Li+ affinity toward the polymer vs LLZO filler. Our DFT calculations uncover that the Li+ affinity is in the order of PDA (polydopamine)> LLZO > PEO. In this system, Li+ ions mainly travel through LLZO in PEO-LLZO electrolyte and are uniformly dispersed in the PMPI layer due to the high Li+ affinity of PDA and the homogeneous distribution of PDA in PEO matrix. Therefore, our design enables even distribution of current and eliminates growth of dendrite lithium while still providing fast ionic conduction. PDA was also found to broaden the electrochemical stability window, thus improving the compatibility of SPEs with high-voltage cathodes due to the intermolecular interaction between PDA and PEO.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The Origin of Fast Lithium-Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes
    Ma, Xia-Xia
    Shen, Xin
    Chen, Xiang
    Fu, Zhong-Heng
    Yao, Nan
    Zhang, Rui
    Zhang, Qiang
    SMALL STRUCTURES, 2022, 3 (08):
  • [22] Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective
    Tong, Bo
    Song, Ziyu
    Wu, Hao
    Wang, Xingxing
    Feng, Wenfang
    Zhou, Zhibin
    Zhang, Heng
    MATERIALS FUTURES, 2022, 1 (04):
  • [23] Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte - A key to enhancing the rate capability of lithium-ion batteries
    Abe, T
    Sagane, F
    Ohtsuka, M
    Iriyama, Y
    Ogumi, Z
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : A2151 - A2154
  • [24] Enhanced lithium-ion transport in organosilyl electrolytes for lithium-ion battery applications
    Leslie J. Lyons
    Scott Beecher
    Evan Cunningham
    Tom Derrah
    Shengyi Su
    Junmian Zhu
    Monica Usrey
    Adrián Peña-Hueso
    Tobias Johnson
    Robert West
    MRS Communications, 2019, 9 : 985 - 991
  • [25] Enhanced lithium-ion transport in organosilyl electrolytes for lithium-ion battery applications
    Lyons, Leslie J.
    Beecher, Scott
    Cunningham, Evan
    Derrah, Tom
    Su, Shengyi
    Zhu, Junmian
    Usrey, Monica
    Pena-Hueso, Adrian
    Johnson, Tobias
    West, Robert
    MRS COMMUNICATIONS, 2019, 9 (03) : 985 - 991
  • [26] Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries
    Benitez, Laura
    Seminario, Jorge M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) : E3159 - E3170
  • [27] Enhancement of Lithium-Ion Transport in Poly(acrylonitrile) with Hydrogen Titanate Nanotube Fillers as Solid Polymer Electrolytes for Lithium-Ion Battery Applications
    Pignanelli, Fernando
    Romero, Mariano
    Faccio, Ricardo
    Fernandez-Werner, Luciana
    Mombru, Alvaro W.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (03): : 1492 - 1499
  • [28] Is it worthwhile to recover lithium-ion battery electrolyte during lithium-ion battery recycling?
    Vanderburgt, Stephen
    Santos, Rafael M.
    Chiang, Yi Wai
    RESOURCES CONSERVATION AND RECYCLING, 2023, 189
  • [29] Hyperbranched Solid Polymer Electrolyte Based on Polyzwitterions and Polyimide for Lithium-Ion Batteries
    Han, Wensong
    Han, Zhuo
    Chang, Hengwei
    Wei, Yanping
    Zhou, Bo
    Wang, Fengshou
    Zhang, Jiming
    Tan, Xuejie
    Xing, Dianxiang
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (17): : 10263 - 10273
  • [30] Filler-Embedded Solid Polymer Electrolyte For Lithium-Ion Battery Application
    Ratri, Christin
    Sabrina, Qolby
    Lestariningsih, Titik
    PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON FRONTIER OF APPLIED PHYSICS (ISFAP 2019), 2020, 2256