An image inpainting method based on generative adversarial networks inversion and autoencoder

被引:0
|
作者
Wang, Yechen [1 ,2 ]
Song, Bin [1 ,2 ]
Zhang, Zhiyong [1 ,2 ]
机构
[1] Henan Univ Sci & Technol, Informat Engn Coll, Luoyang 471023, Henan, Peoples R China
[2] Henan Univ Sci & Technol, Henan Int Joint Lab Cyberspace Secur Applicat, Luoyang, Henan, Peoples R China
关键词
image processing; neural nets;
D O I
10.1049/ipr2.13005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image inpainting aims to repair the damaged region according to the known content in the damaged image. Recently, image inpainting methods have poor effects on high-resolution damaged images, and the research on the inpainting of large-area damaged images is limited. Therefore, this paper proposes an image inpainting method based on Generative Adversarial Networks (GAN) inversion and autoencoder. This work consists of two phases: first, the authors design an autoencoder-based GAN, which learns the mapping from noise to low-dimensional feature maps by training a generator, and then converts the generated feature maps into high-resolution images. Thus, the difficulty of learning the mapping relationship is reduced. Second, the authors adopt the learning-based GAN inversion to infer the closest latent code. The trained GAN is then used to reconstruct the complete image. Finally, the authors compare their method with other classical methods on the CelebAMask-HQ, Flickr-Faces-HQ, and ImageNet datasets. According to the quantitative comparison, when the mask range is large, in other words, when the image has a large area of damage, the authors' method is superior to the comparison methods. According to the qualitative comparison, the structure of the high-resolution image inpainted by the authors' method is more reasonable and the texture details are more realistic. This paper proposes an image inpainting method based on GAN inversion and autoencoder. According to the experiments, the method proposed in this paper is more suitable for high-resolution image inpainting. And the authors' method also has higher inpainting quality when a large range of damaged images are involved.image
引用
收藏
页码:1042 / 1052
页数:11
相关论文
共 50 条
  • [31] A Novel Image Captioning Method Based on Generative Adversarial Networks
    Fan, Yang
    Xu, Jungang
    Sun, Yingfei
    Wang, Yiyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 281 - 292
  • [32] Image Retrieval Based on Hash Method and Generative Adversarial Networks
    Peng Yanfei
    Hong, Wu
    Zi Lingling
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (10)
  • [33] Image inpainting based on tensor ring decomposition with generative adversarial network
    Yuan, Jianjun
    Wu, Hong
    Zhao, Luoming
    Wu, Fujun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, : 7621 - 7634
  • [34] Image inpainting based on tensor ring decomposition with generative adversarial network
    Yuan, Jianjun
    Wu, Hong
    Zhao, Luoming
    Wu, Fujun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024,
  • [35] Mural inpainting progressive generative adversarial networks based on structure guided
    Chen Y.
    Chen J.
    Tao M.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (06): : 1247 - 1259
  • [36] Blind Image Separation Method Based on Cascade Generative Adversarial Networks
    Jia, Fei
    Xu, Jindong
    Sun, Xiao
    Ma, Yongli
    Ni, Mengying
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [37] An Image Style Diversified Synthesis Method Based on Generative Adversarial Networks
    Yang, Zujian
    Qiu, Zhao
    ELECTRONICS, 2022, 11 (14)
  • [38] A Method for Single Image Phase Unwrapping based on Generative Adversarial Networks
    Li, Cong
    Tian, Yong
    Tian, Jiandong
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [39] Malware detection method based on image analysis and generative adversarial networks
    Liu, Yanhua
    Li, Jiaqi
    Liu, Baoxu
    Gao, Xiaoling
    Liu, Ximeng
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (22):
  • [40] A THz Passive Image Generation Method Based on Generative Adversarial Networks
    Yang, Guan
    Li, Chao
    Liu, Xiaojun
    Fang, Guangyou
    APPLIED SCIENCES-BASEL, 2022, 12 (04):