Lyapunov Functions for Linear Hyperbolic Systems

被引:1
|
作者
Atamas, Ivan [1 ]
Dashkovskiy, Sergey [1 ]
Slynko, Vitalii [1 ]
机构
[1] Julius Maximilians Univ Wurzburg, D-97074 Wurzburg, Germany
关键词
Coupled systems; exponential L-2-stability; linear nonstrictly hyperbolic systems; Lyapunov function; BOUNDARY FEEDBACK STABILIZATION; EXPONENTIAL STABILITY; EQUATIONS;
D O I
10.1109/TAC.2023.3247879
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we develop new methods to construct a Lyapunov function for 1-D linear hyperbolic equations with variable coefficients. The main focus is on the nonstrictly hyperbolic case for which we give an example demonstrating that existing approaches cannot provide sufficient conditions for the asymptotic stability, but our approach does. Sufficient conditions for exponential L-2-stability for a connected 2 x 2 system of linear 1-D hyperbolic systems are obtained. By means of examples, we compare the capabilities of our approach with the existing ones.
引用
收藏
页码:6496 / 6508
页数:13
相关论文
共 50 条
  • [41] ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws
    Prieur, Christophe
    Mazenc, Frederic
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2012, 24 (1-2) : 111 - 134
  • [42] Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws
    Diagne, Ababacar
    Bastin, Georges
    Coron, Jean-Michel
    AUTOMATICA, 2012, 48 (01) : 109 - 114
  • [43] Common Lyapunov Functions for Switched Linear Systems: Linear Programming-Based Approach
    Andersen, Stefania
    Giesl, Peter
    Hafstein, Sigurdur
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 901 - 906
  • [44] Simplicity of Lyapunov spectrum for linear cocycles over non-uniformly hyperbolic systems
    BACKES, L. U. C. A. S.
    POLETTI, M. A. U. R. I. C. I. O.
    VARANDAS, P. A. U. L. O.
    LIMA, Y. U. R. I.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (11) : 2947 - 2969
  • [45] On Linear Co-positive Lyapunov Functions for a Special of Switched Linear Positive Systems
    Ding, Xiuyong
    Shu, Lan
    Xiang, Changcheng
    ADVANCED INTELLIGENT COMPUTING, 2011, 6838 : 650 - +
  • [46] Applications of Linear Co-positive Lyapunov Functions for Switched Linear Positive Systems
    Knorn, Florian
    Mason, Oliver
    Shorten, Robert
    POSITIVE SYSTEMS, PROCEEDINGS, 2009, 389 : 331 - 338
  • [47] EXISTENCE OF NON-SYMMETRICAL LYAPUNOV FUNCTIONS FOR LINEAR-SYSTEMS
    BENZAOUIA, A
    BURGAT, C
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (04) : 597 - 607
  • [48] Relationship Between the Green and Lyapunov Functions in Linear Extensions of Dynamical Systems
    I. M. Hrod
    V. L. Kulyk
    Ukrainian Mathematical Journal, 2014, 66 : 617 - 624
  • [49] Relationship Between the Green and Lyapunov Functions in Linear Extensions of Dynamical Systems
    Hrod, I. M.
    Kulyk, V. L.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (04) : 617 - 624
  • [50] On construction of Lyapunov functions for scalar linear time-varying systems
    Zhou, Bin
    Tian, Yang
    Lam, James
    SYSTEMS & CONTROL LETTERS, 2020, 135 (135)