Multi-objective control optimization of isolated bridge using replicator controller and NSGA-II

被引:2
|
作者
Momeni, Zahrasadat [1 ]
Bagchi, Ashotush [1 ]
机构
[1] Concordia Univ, Gina Cody Sch Engn & Comp Sci, Bldg Civil & Environm Engn Dept, Montreal, PQ H3G 1M8, Canada
关键词
Smart structures; Optimal vibration control; Replicator dynamics; Earthquake engineering; Semi-active control; STRUCTURAL CONTROL-PROBLEM; HIGHWAY BRIDGE; VIBRATION CONTROL; GAME-THEORY; EVOLUTION; DRIVEN; MODEL;
D O I
10.1016/j.heliyon.2023.e19381
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Earthquakes can cause significant damage to constructed structures, leading engineers to design systems that effectively reduce damage and improve real-time vibration control. While base isolation is a commonly used passive method for seismic protection in highway structures, it has limitations such as a lack of immediate adaptation, constrained power dissipation capacity, and poor performance during earthquakes. To address the limitations of passive base isolation bearings, a hybrid control system that includes semi-active MR dampers is being introduced into isolated highway bridge structures. The aim is to enhance vibration reduction and improve overall performance. One of the major challenges in implementing this technology is developing appropriate control algorithms to handle the nonlinear behavior of semi-active devices. This paper proposes an adaptive data-driven control algorithm, informed by evolutionary game theory and a multi-objective optimization process, to optimize the distribution of voltage to semi-active MR dampers based on measurements of the damper's response to input signals. The algorithm is designed to provide optimal seismic protection. The performance of the replicator dynamics in the control system depends on three critical parameters: total population, which represents the total available resources or the sum of actuator forces; growth rate, which is the rate at which resources are distributed among control devices; and the fictitious fitness function, which regulates power consumption. Previous studies used sensitivity analysis to ascertain the best values for population size and growth rate, a time-consuming and unreliable process. This study aims to improve the performance of the system by solving a multi-objective problem. The proposed approach integrates a control algorithm with a multi-objective optimization algorithm, namely NSGA-II, to find Pareto optimal values for all parameters of the replicator dynamics. These parameters include total population, growth rate, and the fictitious function, with the aim of ensuring sustainability. By considering multiple objectives simultaneously, the proposed approach can provide a more comprehensive and effective solution for the bridge control problem. The effectiveness of this proposed approach is demonstrated through sample results Utilizing a case study centered around the Southern California Interstate 91/5 Overcrossing Highway Bridge, which is exposed to seismic activities.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Multi-objective classification based on NSGA-II
    Zhao, Binping
    Xue, Yu
    Xu, Bin
    Ma, Tinghuai
    Liu, Jingfa
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2018, 9 (06) : 539 - 546
  • [22] Multi-objective materialized view selection using NSGA-II
    Prakash, Jay
    Kumar, T. V. Vijay
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2020, 11 (05) : 972 - 984
  • [23] A multi-objective hitch avoidance algorithm using NSGA-II
    Monika
    Manhas, Pratima
    International Journal of Industrial and Systems Engineering, 2024, 48 (04) : 556 - 567
  • [24] Multi-objective materialized view selection using NSGA-II
    Jay Prakash
    T. V. Vijay Kumar
    International Journal of System Assurance Engineering and Management, 2020, 11 : 972 - 984
  • [25] Multi-objective automatic calibration of SWAT using NSGA-II
    Bekele, Elias G.
    Nicklow, John W.
    JOURNAL OF HYDROLOGY, 2007, 341 (3-4) : 165 - 176
  • [26] Multi-objective optimization of power system reconstruction based on NSGA-II
    Wang, Hongtao
    Liu, Yutian
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2009, 33 (23): : 14 - 18
  • [27] Multi-Objective Detector and Tracker Parameter Optimization via NSGA-II
    Fogle, Ryan
    Salva, Karl
    Vasquez, Juan
    Kessler, Ash
    2015 IEEE WINTER APPLICATIONS AND COMPUTER VISION WORKSHOPS (WACVW), 2015, : 4 - 9
  • [28] Multi-Objective Robust Optimization Based on NSGA-II and Degree of Robustness
    Qiang, Jie
    Qi, Rongbin
    Qian, Feng
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 4859 - 4864
  • [29] Multi-objective configuration optimization of modularized product based on NSGA-II
    State Key Lab. of CAD and CG, Zhejiang University, Hangzhou 310027, China
    Jisuanji Jicheng Zhizao Xitong, 2007, 11 (2092-2098+2161):
  • [30] Multi-objective optimization of liquid metal bearing based on NSGA-II
    Tang, Siwei
    Zhang, Guohua
    Zheng, Yueqing
    Xie, Gongnan
    Cui, Hailong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2025, 239 (02) : 151 - 162