Division algebras and MRD codes from skew polynomials

被引:0
|
作者
Thompson, D. [1 ]
Pumpluen, S. [2 ]
机构
[1] 28 Coral Lane Newhall, Swadlincote DE11 0XU, England
[2] Univ Nottingham Univ Pk, Sch Math Sci, Nottingham NG7 2RD, England
关键词
skew polynomial ring; skew polynomials; division algebras; MRD codes; RANK-METRIC CODES; IDEALS; SIGMA; RING; (F;
D O I
10.1017/S001708952300006X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a division algebra, finite-dimensional over its center, and R = D[t; s, d] a skew polynomial ring. Using skew polynomials f ? R, we construct division algebras and maximum rank distance codes consisting of matrices with entries in a noncommutative division algebra or field. These include Jha Johnson semifields, and the classes of classical and twisted Gabidulin codes constructed by Sheekey.
引用
收藏
页码:480 / 500
页数:21
相关论文
共 50 条