Improved Wireless Medical Cyber-Physical System (IWMCPS) Based on Machine Learning

被引:8
|
作者
Alzahrani, Ahmad [1 ]
Alshehri, Mohammed [2 ]
AlGhamdi, Rayed [1 ]
Sharma, Sunil Kumar [2 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Technol, Jeddah 21589, Saudi Arabia
[2] Majmaah Univ, Coll Comp & Informat Sci, Dept Informat Technol, Majmaah 11952, Saudi Arabia
关键词
security schemes; machine learning; medical cyber-physical systems; attacks; data; classification; SECURITY; SCHEME; DESIGN; CARE;
D O I
10.3390/healthcare11030384
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Medical cyber-physical systems (MCPS) represent a platform through which patient health data are acquired by emergent Internet of Things (IoT) sensors, preprocessed locally, and managed through improved machine intelligence algorithms. Wireless medical cyber-physical systems are extensively adopted in the daily practices of medicine, where vast amounts of data are sampled using wireless medical devices and sensors and passed to decision support systems (DSSs). With the development of physical systems incorporating cyber frameworks, cyber threats have far more acute effects, as they are reproduced in the physical environment. Patients' personal information must be shielded against intrusions to preserve their privacy and confidentiality. Therefore, every bit of information stored in the database needs to be kept safe from intrusion attempts. The IWMCPS proposed in this work takes into account all relevant security concerns. This paper summarizes three years of fieldwork by presenting an IWMCPS framework consisting of several components and subsystems. The IWMCPS architecture is developed, as evidenced by a scenario including applications in the medical sector. Cyber-physical systems are essential to the healthcare sector, and life-critical and context-aware health data are vulnerable to information theft and cyber-okayattacks. Reliability, confidence, security, and transparency are some of the issues that must be addressed in the growing field of MCPS research. To overcome the abovementioned problems, we present an improved wireless medical cyber-physical system (IWMCPS) based on machine learning techniques. The heterogeneity of devices included in these systems (such as mobile devices and body sensor nodes) makes them prone to many attacks. This necessitates effective security solutions for these environments based on deep neural networks for attack detection and classification. The three core elements in the proposed IWMCPS are the communication and monitoring core, the computational and safety core, and the real-time planning and administration of resources. In this study, we evaluated our design with actual patient data against various security attacks, including data modification, denial of service (DoS), and data injection. The IWMCPS method is based on a patient-centric architecture that preserves the end-user's smartphone device to control data exchange accessibility. The patient health data used in WMCPSs must be well protected and secure in order to overcome cyber-physical threats. Our experimental findings showed that our model attained a high detection accuracy of 92% and a lower computational time of 13 sec with fewer error analyses.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Cyber-physical battlefield perception systems based on machine learning technology for data delivery
    Jian Zhao
    Chengzhuo Han
    Zhengqi Cui
    Rui Wang
    Tingting Yang
    Peer-to-Peer Networking and Applications, 2019, 12 : 1785 - 1798
  • [42] Cyber-physical battlefield perception systems based on machine learning technology for data delivery
    Zhao, Jian
    Han, Chengzhuo
    Cui, Zhengqi
    Wang, Rui
    Yang, Tingting
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2019, 12 (06) : 1785 - 1798
  • [43] A Machine Learning-based Attack-Preventive Synthesis for Cyber-Physical DMFBs
    Datta, Piyali
    Chakraborty, Arpan
    Pal, Rajat Kumar
    IETE JOURNAL OF RESEARCH, 2024,
  • [44] Sequential recovery of cyber-physical power systems based on improved Q-learning
    Li, Jian
    Li, Yiqiang
    Su, Qingyu
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (17): : 13692 - 13711
  • [45] INDUSTRIAL WIRELESS CYBER-PHYSICAL SYSTEMS PERFORMANCE USING DEEP LEARNING
    Kashef , Mohamed
    Candell, Richard
    Montgomery, Karl
    PROCEEDINGS OF ASME 2023 18TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2023, VOL 2, 2023,
  • [46] Industrial Wireless IP-Based Cyber-Physical Systems
    Watteyne, Thomas
    Handziski, Vlado
    Vilajosana, Xavier
    Duquennoy, Simon
    Hahm, Oliver
    Baccelli, Emmanuel
    Wolisz, Adam
    PROCEEDINGS OF THE IEEE, 2016, 104 (05) : 1025 - 1038
  • [47] Deep reinforcement learning for wireless sensor scheduling in cyber-physical systems
    Leong, Alex S.
    Ramaswamy, Arunselvan
    Quevedo, Daniel E.
    Karl, Holger
    Shi, Ling
    AUTOMATICA, 2020, 113
  • [48] Verifying Cyber-Physical System Behavior in the Context of Cyber-Physical System-Networks
    Brings, Jennifer
    2017 IEEE 25TH INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE (RE), 2017, : 556 - 561
  • [49] Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey
    Jun Zhang
    Lei Pan
    Qing-Long Han
    Chao Chen
    Sheng Wen
    Yang Xiang
    IEEE/CAA Journal of Automatica Sinica, 2022, 9 (03) : 377 - 391
  • [50] Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey
    Zhang, Jun
    Pan, Lei
    Han, Qing-Long
    Chen, Chao
    Wen, Sheng
    Xiang, Yang
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (03) : 377 - 391