Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability

被引:43
|
作者
Quan, Yuhui [1 ]
Yang, Ming [2 ]
Chen, Minfeng [1 ]
Zhou, Weijun [1 ]
Han, Xiang [1 ,3 ]
Chen, Jizhang [1 ,3 ]
Liu, Bo [4 ]
Shi, Siqi [5 ]
Zhang, Peixin [2 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Peoples R China
[3] Nanjing Forestry Univ, Coinnovat Ctr Efficient Proc & Utilizat Forest Res, Nanjing 210037, Peoples R China
[4] Jinggangshan Univ, Coll Math & Phys, Jian 343009, Peoples R China
[5] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous Zn-ion batteries; Sorbitol additives; Electrolyte modifications; Interfacial stability; Low-temperature performances; CHALLENGES; ANODE;
D O I
10.1016/j.cej.2023.141392
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The benefits from Zn metal anodes and aqueous electrolytes have endowed aqueous zinc-ion batteries with widespread concerns, whereas they are compromised by Zn dendrites, severe side reactions, and poor tolerance to low-temperature environments. Herein, food-grade sorbitol with abundant hydroxyl groups is used as the electrolyte additive, which can interact strongly with both water molecules and Zn electrode, thus tailoring the solvation sheath of hydrated Zn2+ ions, tuning the surface of Zn electrode, improving the wettability with Zn electrode, broadening the working potential of electrolyte, lowering the desolvation activation energy, enhancing the Zn2+ ion transfer number, preventing the corrosion issue, and enhancing the freezing-tolerance ability. According to a series of electrochemical tests as well as in-situ and ex-situ measurements, the addition of 10 % sorbitol into aqueous electrolyte can effectively inhibit dendritic growth and harmful side reactions at the surface of Zn electrode. Hence, the modified electrolyte enables Zn/MnO2 battery to own superior cyclability (89.5 % capacity retention after 1000 cycles) and slow self-discharge rate. Even at a low temperature of - 10 degrees C, the battery can still offer good electrochemical performances, while that without sorbitol additive can not work normally. This work offers a facile strategy to realize durable anti-freezing aqueous batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Controlled nucleation and growth for the dendrite-free zinc anode in aqueous zinc-ion battery
    Chen, Xueting
    Liu, Ting
    Ding, Yubin
    Sun, Xiao
    Huang, Juanjuan
    Qiao, Junqiang
    Peng, Shanglong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 970
  • [42] Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries
    Cao, Ziyi
    Zhuang, Peiyuan
    Zhang, Xiang
    Ye, Mingxin
    Shen, Jianfeng
    Ajayan, Pulickel M.
    ADVANCED ENERGY MATERIALS, 2020, 10 (30)
  • [43] Bonding interaction regulation in hydrogel electrolyte enable dendrite-free aqueous zinc-ion batteries from-20 to 60 °C
    Wei, Tingting
    Ren, Yingke
    Li, Zhaoqian
    Zhang, Xianxi
    Ji, Denghui
    Hu, Linhua
    CHEMICAL ENGINEERING JOURNAL, 2022, 434
  • [44] Electrolyte Additive Strategies for Suppression of Zinc Dendrites in Aqueous Zinc-Ion Batteries
    Zhai, Chongyuan
    Zhao, Dandi
    He, Yapeng
    Huang, Hui
    Chen, Buming
    Wang, Xue
    Guo, Zhongcheng
    BATTERIES-BASEL, 2022, 8 (10):
  • [45] Silk Fibroin Coating Enables Dendrite-free Zinc Anode for Long-Life Aqueous Zinc-Ion Batteries
    Lu, Jiahui
    Yang, Jian
    Zhang, Zhihao
    Wang, Chengyin
    Xu, Jing
    Wang, Tianyi
    CHEMSUSCHEM, 2022, 15 (15)
  • [46] Polyoxometalate solution passivation enabling dendrite-free and high-performance zinc anodes in aqueous zinc-ion batteries
    Sui, Bin-bin
    Sha, Lin
    Bao, Qing-peng
    Wang, Peng-fei
    Gong, Zhe
    Zhou, Ming-dong
    Shi, Fanian
    Zhu, Kai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 669 : 886 - 895
  • [47] Highly Reversible and Dendrite-Free Zinc Anodes Enabled by PEDOT Nanowire Interfacial Layers for Aqueous Zinc-Ion Batteries
    Wang, Yao
    Zhang, Zhanrui
    Wang, Liwen
    Wang, Jingxuan
    Meng, Weijia
    Sun, Jie
    Li, Qi
    He, Xuexia
    Liu, Zonghuai
    Lei, Zhibin
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (32) : 43026 - 43037
  • [48] An Ultrahigh-Modulus Hydrogel Electrolyte for Dendrite-Free Zinc Ion Batteries
    Chen, Zong-Ju
    Shen, Tian-Yu
    Xiao, Xiong
    He, Xiu-Chong
    Luo, Yan-Long
    Jin, Zhong
    Li, Cheng-Hui
    Advanced Materials, 2024, 36 (52)
  • [49] Manipulating Deposition Behavior by Polymer Hydrogel Electrolyte Enables Dendrite-Free Zinc Anode for Zinc-Ion Hybrid Capacitors
    Liu, Chengzhe
    Guo, Fengjiao
    Yang, Qi
    Mi, Hongyu
    Ji, Chenchen
    Yang, Nianjun
    Qiu, Jieshan
    SMALL METHODS, 2023, 7 (02)
  • [50] Highly Efficient, Dendrite-Free Zinc Electrodeposition in Mild Aqueous Zinc-Ion Batteries through Indium-Based Substrates
    Tribbia, Michele
    Glenneberg, Jens
    Zampardi, Giorgia
    La Mantia, Fabio
    BATTERIES & SUPERCAPS, 2022, 5 (05)