Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability

被引:43
|
作者
Quan, Yuhui [1 ]
Yang, Ming [2 ]
Chen, Minfeng [1 ]
Zhou, Weijun [1 ]
Han, Xiang [1 ,3 ]
Chen, Jizhang [1 ,3 ]
Liu, Bo [4 ]
Shi, Siqi [5 ]
Zhang, Peixin [2 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Peoples R China
[3] Nanjing Forestry Univ, Coinnovat Ctr Efficient Proc & Utilizat Forest Res, Nanjing 210037, Peoples R China
[4] Jinggangshan Univ, Coll Math & Phys, Jian 343009, Peoples R China
[5] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous Zn-ion batteries; Sorbitol additives; Electrolyte modifications; Interfacial stability; Low-temperature performances; CHALLENGES; ANODE;
D O I
10.1016/j.cej.2023.141392
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The benefits from Zn metal anodes and aqueous electrolytes have endowed aqueous zinc-ion batteries with widespread concerns, whereas they are compromised by Zn dendrites, severe side reactions, and poor tolerance to low-temperature environments. Herein, food-grade sorbitol with abundant hydroxyl groups is used as the electrolyte additive, which can interact strongly with both water molecules and Zn electrode, thus tailoring the solvation sheath of hydrated Zn2+ ions, tuning the surface of Zn electrode, improving the wettability with Zn electrode, broadening the working potential of electrolyte, lowering the desolvation activation energy, enhancing the Zn2+ ion transfer number, preventing the corrosion issue, and enhancing the freezing-tolerance ability. According to a series of electrochemical tests as well as in-situ and ex-situ measurements, the addition of 10 % sorbitol into aqueous electrolyte can effectively inhibit dendritic growth and harmful side reactions at the surface of Zn electrode. Hence, the modified electrolyte enables Zn/MnO2 battery to own superior cyclability (89.5 % capacity retention after 1000 cycles) and slow self-discharge rate. Even at a low temperature of - 10 degrees C, the battery can still offer good electrochemical performances, while that without sorbitol additive can not work normally. This work offers a facile strategy to realize durable anti-freezing aqueous batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Electrolyte formulation progresses for dendrite-free zinc deposition in aqueous zinc-ion batteries
    Zhang, Zhaoyu
    Liu, Xiaoqing
    Li, Cheng Chao
    CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 46
  • [2] Dendrite-free zinc metal anodes enabled by electrolyte additive for high-performing aqueous zinc-ion batteries
    Feng, Wenjing
    Liang, Zengteng
    Zhou, Wei
    Li, Xingpeng
    Wang, Wenbo
    Chi, Yonglei
    Liu, Weidong
    Gengzang, Duojie
    Zhang, Guoheng
    Chen, Qiong
    Wang, Peiyu
    Chen, Wanjun
    Zhang, Shengguo
    DALTON TRANSACTIONS, 2023, 52 (22) : 7457 - 7463
  • [4] Advanced design for anti-freezing aqueous zinc-ion batteries
    Deng, Shenzhen
    Xu, Bingang
    Zhao, Jingxin
    Fu, Hong
    ENERGY STORAGE MATERIALS, 2024, 70
  • [5] Sulfonated hydrogel electrolyte enables dendrite-free zinc-ion batteries
    Hu, Yingqi
    Wang, Zhan
    Li, Yingzhi
    Liu, Peiwen
    Liu, Xinlong
    Liang, Guangxian
    Zhang, Di
    Fan, Xin
    Lu, Zhouguang
    Wang, Wenxi
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [6] Sulfonated hydrogel electrolyte enables dendrite-free zinc-ion batteries
    Hu, Yingqi
    Wang, Zhan
    Li, Yingzhi
    Liu, Peiwen
    Liu, Xinlong
    Liang, Guangxian
    Zhang, Di
    Fan, Xin
    Lu, Zhouguang
    Wang, Wenxi
    Chemical Engineering Journal, 2024, 479
  • [7] An anti-freezing and anti-drying multifunctional gel electrolyte for flexible aqueous zinc-ion batteries
    Wang, Rui
    Yao, Minjie
    Huang, Shuo
    Tian, Jinlei
    Niu, Zhiqiang
    SCIENCE CHINA-MATERIALS, 2022, 65 (08) : 2189 - 2196
  • [8] Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries
    Zhang, Qi
    Luan, Jingyi
    Tang, Yougen
    Ji, Xiaobo
    Wang, Haiyan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (32) : 13180 - 13191
  • [9] A dendrite-free anode for stable aqueous rechargeable zinc-ion batteries
    Kumar, Santosh
    Yoon, Hocheol
    Park, Hyeonghun
    Park, Geumyong
    Suh, Seokho
    Kim, Hyeong-Jin
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 108 : 321 - 327
  • [10] Anti-freezing electrolyte modification strategies toward low-temperature aqueous zinc-ion batteries
    Yuan, Xinyao
    Zhang, Di
    Lu, Hongfei
    Duan, Chenxu
    Jin, Yang
    IET ENERGY SYSTEMS INTEGRATION, 2024,