A machine learning-based approach for mapping leachate contamination using geoelectrical methods

被引:12
|
作者
Piegari, Ester [1 ]
De Donno, Giorgio [2 ]
Melegari, Davide [2 ]
Paoletti, Valeria [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Sci Terra Ambiente & Risorse, Naples, Italy
[2] Sapienza Univ Roma, Dipartimento Ingn Civile Edile & Ambientale, Rome, Italy
关键词
Leachate contamination detection; Machine learning; K -means clustering geophysical imaging; Electrical resistivity tomography; Induced polarization tomography; CLUSTER-ANALYSIS; RESISTIVITY; INVERSION; LANDFILLS; DUMPSITES; TOOL; ERT; IP;
D O I
10.1016/j.wasman.2022.12.015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Leachate is the main source of pollution in landfills and its negative impacts continue for several years even after landfill closure. In recent years, geophysical methods are recognized as effective tools for providing an imaging of the leachate plume. However, they produce subsurface cross-sections in terms of individual physical quantities, leaving room for ambiguities on interpretation of geophysical models and uncertainties in the definition of contaminated zones. In this work, we propose a machine learning-based approach for mapping leachate contamination through an effective integration of geoelectrical tomographic data. We apply the proposed approach for the characterization of two urban landfills. For both cases, we perform a multivariate analysis on datasets consisting of electrical resistivity, chargeability and normalized chargeability (chargeability-to -re-sistivity ratio) data extracted from previously inverted model sections. By executing a K-Means cluster analysis, we find that the best partition of the two datasets contains ten and eleven classes, respectively. From such classes and also introducing a distance-based colour code, we get updated cross-sections and provide an easy and less ambiguous identification of the leachate accumulation zones. The latter turn out to be characterized by coor-dinate values of cluster centroids<3 omega m and >27 mV/V and 11 mS/m. Our findings, also supported by borehole data for one of the investigation sites, show that the combined use of geophysical imaging and unsupervised machine learning is promising and can yield new perspectives for the characterization of leachate distribution and pollution assessment in landfills.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 50 条
  • [31] Machine learning-based new approach to films review
    Jassim, Mustafa Abdalrassual
    Abd, Dhafar Hamed
    Omri, Mohamed Nazih
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [32] A Machine learning-based approach to determining stress in rails
    Belding, Matthew
    Enshaeian, Alireza
    Rizzo, Piervincenzo
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (01): : 639 - 656
  • [33] Evaluating a Machine Learning-based Approach for Cache Configuration
    Ribeiro, Lucas
    Jacobi, Ricardo
    Junior, Francisco
    da Silva, Jones Yudi
    Silva, Ivan Saraiva
    2022 IEEE 13TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS (LASCAS), 2022, : 180 - 183
  • [34] Predicting mergers & acquisitions: A machine learning-based approach
    Zhao, Yuchen
    Bi, Xiaogang
    Ma, Qing-Ping
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2025, 99
  • [35] A Machine Learning-based Approach for The Prediction of Electricity Consumption
    Dinh Hoa Nguyen
    Anh Tung Nguyen
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1301 - 1306
  • [36] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [37] A Machine Learning-Based Lexicon Approach for Sentiment Analysis
    Sahu, Tirath Prasad
    Khandekar, Sarang
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2020, 16 (02) : 8 - 22
  • [38] Phishing Attacks Detection A Machine Learning-Based Approach
    Salahdine, Fatima
    El Mrabet, Zakaria
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 250 - 255
  • [39] Machine learning-based new approach to films review
    Mustafa Abdalrassual Jassim
    Dhafar Hamed Abd
    Mohamed Nazih Omri
    Social Network Analysis and Mining, 13
  • [40] Subtyping of hepatocellular adenoma: a machine learning-based approach
    Liu, Yongjun
    Liu, Yao-Zhong
    Sun, Lifu
    Zen, Yoh
    Inomoto, Chie
    Yeh, Matthew M.
    VIRCHOWS ARCHIV, 2022, 481 (01) : 49 - 61