Dynamical Systems of Mobius Transformation: Real, p-Adic and Complex Variables

被引:0
|
作者
Aliev, E. T. [1 ]
Rozikov, U. A. [2 ,3 ,4 ]
机构
[1] Namangan Inst Engn & Technol, 7 Kasansay St, Namangan 160115, Namangan, Uzbekistan
[2] V I Romanovskiy Inst Math, 9 Univ Str, Tashkent 100174, Uzbekistan
[3] Cent Asian Univ, Sch Engn, 264 Milliy Bog Str, Tashkent 111221, Uzbekistan
[4] Natl Univ Uzbekistan, 4 Univ Str, Tashkent 100174, Uzbekistan
关键词
rational dynamical systems; fixed point; invariant set; Siegel disk; complex p-adic field; GIBBS MEASURES; POTTS-MODEL;
D O I
10.1134/S2070046624010011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider function f(x) = x+a/bx+c, (where b not equal 0, c not equal ab, x not equal-c/b) on three fields: the set of real, p-adic and complex numbers. We study dynamical systems generated by this function on each field separately and give some comparison remarks. For real variable case we show that the real dynamical system of the function depends on the parameters (a, b, c) is an element of R-3. Namely, we classify the parameters to three sets and prove that: for the parameters from first class each point, for which the trajectory is well defined, is a periodic point of f; for the parameters from second class any trajectory (under f) converges to one of fixed points (there may be up to two fixed points); for the parameters from third class any trajectory is dense in R. For the p-adic variable we give a review of known results about dynamical systems of function f. Then using a recently developed method we give simple new proofs of these results and prove some new ones related to trajectories which do not converge. For the complex variables we give a review of known results.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] The Workshop on p-Adic Methods for Modeling of Complex Systems
    Dragovich, B.
    Kozyrev, S. V.
    Volovich, I. V.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2013, 5 (03) : 246 - 248
  • [42] p-Adic Gaussian Random Variables
    Zelenov, E. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 306 (01) : 120 - 126
  • [43] Simultaneous Diophantine approximation in the real, complex and p-adic fields
    Budarina, Natalia
    Dickinson, Detta
    Bernik, Vasili
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 : 193 - 216
  • [44] A divergent Khintchine theorem in the real, complex, and p-adic fields
    Bernik, V.
    Budarina, N.
    Dickinson, D.
    LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (02) : 158 - 173
  • [45] A divergent Khintchine theorem in the real, complex, and p-adic fields
    V. Bernik
    N. Budarina
    D. Dickinson
    Lithuanian Mathematical Journal, 2008, 48 : 158 - 173
  • [46] p-Adic Dynamical Systems of the Function ax/x2+ a
    Rozikov, U. A.
    Sattarov, I. A.
    Yam, S.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2019, 11 (01) : 77 - 87
  • [47] DIAGRAM OF P-ADIC FOURIER TRANSFORMATION
    FRESNEL, J
    MATHAN, BD
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (10): : 653 - 656
  • [48] Some dynamical systems in finite field extensions of the p-adic numbers
    Nyqvist, R
    P-ADIC FUNCTIONAL ANALYSIS, PROCEEDINGS, 2001, 222 : 243 - 253
  • [49] Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions
    Khrennikov, Andrei
    Yurova, Ekaterina
    CHAOS SOLITONS & FRACTALS, 2014, 60 : 11 - 30
  • [50] p-adic discrete dynamical systems and their applications in physics and cognitive sciences
    Khrennikov, A
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2004, 11 (01) : 45 - 70