Automatic crack detection of dam concrete structures based on deep learning

被引:4
|
作者
Lv, Zongjie [1 ,2 ]
Tian, Jinzhang [3 ,4 ]
Zhu, Yantao [1 ,2 ,3 ]
Li, Yangtao [1 ,2 ]
机构
[1] Hohai Univ, Natl Key Lab Water Disaster Prevent, Nanjing 210024, Peoples R China
[2] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210024, Peoples R China
[3] Natl Dam Safety Res Ctr, Wuhan 430010, Hubei, Peoples R China
[4] Changjiang Survey Planning Design & Res Co Ltd, Wuhan 430010, Peoples R China
来源
COMPUTERS AND CONCRETE | 2023年 / 32卷 / 06期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
attention mechanism; crack detection; dam concrete structures; deep learning; focal loss; U-Net;
D O I
10.12989/cac.2023.32.6.615
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Crack detection is an essential method to ensure the safety of dam concrete structures. Low-quality crack images of dam concrete structures limit the application of neural network methods in crack detection. This research proposes a modified attentional mechanism model to reduce the disturbance caused by uneven light, shadow, and water spots in crack images. Also, the focal loss function solves the small ratio of crack information. The dataset collects from the network, laboratory and actual inspection dataset of dam concrete structures. This research proposes a novel method for crack detection of dam concrete structures based on the U-Net neural network, namely AF-UNet. A mutual comparison of OTSU, Canny, region growing, DeepLab V3+, SegFormer, U-Net, and AF-UNet (proposed) verified the detection accuracy. A binocular camera detects cracks in the experimental scene. The smallest measurement width of the system is 0.27 mm. The potential goal is to achieve real-time detection and localization of cracks in dam concrete structures.
引用
收藏
页码:615 / 623
页数:9
相关论文
共 50 条
  • [21] CrackVision: Effective Concrete Crack Detection With Deep Learning and Transfer Learning
    Alkannad, Abdulrahman A.
    Al Smadi, Ahmad
    Yang, Shuyuan
    Al-Smadi, Mutasem K.
    Al-Makhlafi, Moeen
    Feng, Zhixi
    Yin, Zhenlong
    IEEE ACCESS, 2025, 13 : 29554 - 29576
  • [22] Deep Learning-Based Automatic Detection and Evaluation on Concrete Surface Bugholes
    Wei, Fujia
    Shen, Liyin
    Xiang, Yuanming
    Zhang, Xingjie
    Tang, Yu
    Tan, Qian
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 131 (02): : 619 - 637
  • [23] Towards Automatic Crack Detection by Deep Learning and Active Thermography
    Moreno, Ramon
    Gorostegui-Colinas, Eider
    Lopez de Uralde, Pablo
    Muniategui, Ander
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2019, PT II, 2019, 11507 : 151 - 162
  • [24] An efficient approach for automatic crack detection using deep learning
    Usharani, Shola
    Gayathri, R.
    Kovvuri, Uday Surya Deveswar Reddy
    Nivas, Maddukuri
    Md, Abdul Quadir
    Tee, Kong Fah
    Sivaraman, Arun Kumar
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2024, 15 (03) : 434 - 460
  • [25] DepthCrackNet: A Deep Learning Model for Automatic Pavement Crack Detection
    Saberironaghi, Alireza
    Ren, Jing
    JOURNAL OF IMAGING, 2024, 10 (05)
  • [26] Vison Transformer-Based Automatic Crack Detection on Dam Surface
    Zhou, Jian
    Zhao, Guochuan
    Li, Yonglong
    WATER, 2024, 16 (10)
  • [27] Vision-based concrete crack detection using deep learning-based models
    Nabizadeh E.
    Parghi A.
    Asian Journal of Civil Engineering, 2023, 24 (7) : 2389 - 2403
  • [28] Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation
    Lee, Donghan
    Kim, Jeongho
    Lee, Daewoo
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2019, 20 (01) : 287 - 299
  • [29] Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation
    Donghan Lee
    Jeongho Kim
    Daewoo Lee
    International Journal of Aeronautical and Space Sciences, 2019, 20 : 287 - 299
  • [30] Automated Vision-Based Crack Detection on Concrete Surfaces Using Deep Learning
    Rajadurai, Rajagopalan-Sam
    Kang, Su-Tae
    APPLIED SCIENCES-BASEL, 2021, 11 (11):