Regularity criterion for 3D generalized Newtonian fluids in BMO

被引:2
|
作者
Sin, Cholmin [1 ]
Baranovskii, Evgenii S. [2 ]
机构
[1] State Acad Sci, Inst Math, Pyongyang, North Korea
[2] Voronezh State Univ, Dept Appl Math Informat & Mech, Voronezh, Russia
关键词
Generalized Navier-Stokes equations; Non-Newtonian fluids; Shear-dependent viscosity; Regularity criterion; Gagliardo-Nirenberg inequality; BMO; NAVIER-STOKES EQUATIONS; SHEAR THINNING FLUIDS; WEAK SOLUTIONS; ONE-COMPONENT; VELOCITY; EXISTENCE;
D O I
10.1016/j.jde.2023.10.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that a weak solution of the Cauchy problem for 3D unsteady flows of a generalized Newtonian fluid becomes a strong solution for 5/3 < p < 11/5 provided that the velocity field belongs to the critical space L (2/ p-1) (0, T; BMO(R-3)). The main key is to apply variants of Gagliardo-Nirenberg's inequality including a BMO-norm. In particular, when 2 < p < 11/5 , we derive and use a nonlinear variant p-2 of Gagliardo-Nirenberg's inequality including IIuII(BMO) and II|Du| (p-2/2) del( 2)uII2.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:859 / 872
页数:14
相关论文
共 50 条
  • [21] A regularity criterion for 3D micropolar fluid flows
    He, Xiaowei
    Fan, Jishan
    APPLIED MATHEMATICS LETTERS, 2012, 25 (01) : 47 - 51
  • [22] EXISTENCE AND DEGENERATE REGULARITY OF TRAJECTORY STATISTICAL SOLUTION FOR THE 3D INCOMPRESSIBLE NON-NEWTONIAN MICROPOLAR FLUIDS
    Chen, Xiaolin
    Yang, Hujun
    Han, Xiaoling
    Zhao, Caidi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (03): : 1101 - 1118
  • [23] A generalized regularity criterion for 3D Navier-Stokes equations in terms of one velocity component
    Qian, Chenyin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3477 - 3494
  • [24] A regularity criterion for a 3D tropical climate model with damping
    Berti, Diego
    Bisconti, Luca
    Catania, Davide
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (01)
  • [25] A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations
    Gala, Sadek
    Ragusa, Maria Alessandra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 513 - 525
  • [26] Remark on an improved regularity criterion for the 3D MHD equations
    Xu, Xiaojing
    Ye, Zhuan
    Zhang, Zujin
    APPLIED MATHEMATICS LETTERS, 2015, 42 : 41 - 46
  • [27] A regularity criterion of weak solutions to the 3D Boussinesq equations
    Alghamdi, Ahmad Mohammed
    Gala, Sadek
    Ragusa, Maria Alessandra
    AIMS MATHEMATICS, 2017, 2 (03): : 451 - U208
  • [28] Regularity criterion for the 3D Hall-magneto-hydrodynamics
    Dai, Mimi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (01) : 573 - 591
  • [29] An Osgood Type Regularity Criterion for the 3D Boussinesq Equations
    Wu, Qiang
    Hu, Lin
    Liu, Guili
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [30] On the regularity criterion of weak solutions for the 3D MHD equations
    Gala, Sadek
    Ragusa, Maria Alessandra
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):