Pseudocapacitance-Dominated MnNb2O6-C Nanofiber Anode for Li-Ion Batteries

被引:2
|
作者
Cao, Kangzhe [1 ,2 ,3 ]
Wang, Sitian [1 ]
Ma, Jiahui [1 ]
Xing, Xiaobing [1 ]
Liu, Xiaogang [1 ,2 ,3 ]
Jiang, Yong [1 ,2 ,3 ]
Fan, Yang [1 ,3 ]
Liu, Huiqiao [1 ,2 ]
机构
[1] Xinyang Normal Univ, Coll Chem & Chem Engn, Xinyang 464000, Peoples R China
[2] Xinyang Key Lab Low Carbon Energy Mat, Xinyang 464000, Peoples R China
[3] Henan Prov Key Lab Utilizat Nonmet Mineral South H, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
anode; MnNb2O6; Li-ion batteries; reconstruction; capacity-increment; LITHIUM; TRANSPORT; COPPER;
D O I
10.1002/cssc.202301065
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MnNb2O6 anode has attracted much attention owing to its unique properties for holding Li ions. Unluckily, its application as a Li-ion battery anode is restricted by low capacity because of the inferior electronic conductivity and limited electron transfer. Previous studies suggest that structure and component optimization could improve its reversible capacity. This improvement is always companied by capacity increments, however, the reasons have rarely been identified. Herein, MnNb2O6-C nanofibers (NFs) with MnNb2O6 nanoparticles (similar to 15 nm) confined in carbon NFs, and the counterpart MnNb2O6 NFs consisting of larger nanoparticles (40-100 nm) are prepared by electrospinning for clarifying this phenomenon. The electrochemical evaluations indicate that the capacity achieved by the MnNb2O6 NF electrode presents an activation process and a degradation in subsequence. Meanwhile, the MnNb2O6-C NF electrode delivers high reversible capacity and ultra-stable cycling performance. Further analysis based on electrochemical behaviors and microstructure changes reveals that the partial structure rearrangement should be in charge of the capacity increment, mainly including pseudocapacitance increment. This work suggests that diminishing the dimensions of MnNb2O6 nanoparticles and further confining them in a matrix could increase the pseudocapacitance-dominated capacity, providing a novel way to improve the reversible capacity of MnNb2O6 and other intercalation reaction anodes.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] TiO2 Nanotubular Arrays as Anode Materials for Li-Ion Batteries
    Gavrilin, Ilya
    Savchuk, Timofey
    Dronov, Alexey
    Kulova, Tatiana
    PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, : 1394 - 1396
  • [42] Multifunctional TiO2 coating for a SiO anode in Li-ion batteries
    Jeong, Goojin
    Kim, Jae-Hun
    Kim, Young-Ugk
    Kim, Young-Jun
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (16) : 7999 - 8004
  • [43] High capacity TiO2 anode materials for Li-ion batteries
    Guler, Mehmet Oguz
    Cevher, Ozgur
    Cetinkaya, Tugrul
    Tocoglu, Ubeyd
    Akbulut, Hatem
    ENERGY CONVERSION AND MANAGEMENT, 2013, 72 : 111 - 116
  • [44] 2-Carboxyethylgermanium Sesquioxide as A Promising Anode Material for Li-Ion Batteries
    Saverina, Evgeniya A.
    Kapaev, Roman R.
    Stishenko, Pavel, V
    Galushko, Alexey S.
    Balycheva, Victoriya A.
    Ananikov, Valentine P.
    Egorov, Mikhail P.
    Jouikov, Viatcheslav V.
    Troshin, Pavel A.
    Syroeshkin, Mikhail A.
    CHEMSUSCHEM, 2020, 13 (12) : 3137 - 3146
  • [45] Controlled synthesis of Li3VO4/C nanofibers as anode for Li-ion batteries
    Daobo Li
    Zhen Xu
    Dongmei Zhang
    Shibing Ni
    Ionics, 2021, 27 : 4705 - 4712
  • [46] Controlled synthesis of Li3VO4/C nanofibers as anode for Li-ion batteries
    Li, Daobo
    Xu, Zhen
    Zhang, Dongmei
    Ni, Shibing
    IONICS, 2021, 27 (11) : 4705 - 4712
  • [47] Facile preparation of PbSe@C nanoflowers as anode materials for Li-ion batteries
    Lu, Tianming
    Zhao, Jiachang
    Yuan, Jing
    Xu, Jingli
    Jin, Jun
    CHEMICAL ENGINEERING SCIENCE, 2023, 265
  • [48] Rheological behavior and microstructure formation of Si/C anode slurries for Li-ion batteries
    Park, Jeong Hoon
    Ahn, Chan Hyeok
    Ahn, Kyung Hyun
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2023, 35 (04) : 335 - 347
  • [49] A three-dimensional network structure Si/C anode for Li-ion batteries
    Ying Jiang
    Shi Chen
    Daobin Mu
    Borong Wu
    Qi Liu
    Zhikun Zhao
    Feng Wu
    Journal of Materials Science, 2017, 52 : 10950 - 10958
  • [50] Milled-Si@C Composites as Potential Anode Materials for Li-ion Batteries
    Lv, Hong
    Wang, Sen
    Zhang, Guanghui
    Wang, Dabin
    Zhou, Wei
    Li, Bing
    Xue, Minzhe
    Zhang, Cunman
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (10): : 9838 - 9849