Real-time anomaly detection on time series of industrial furnaces: A comparison of autoencoder architectures

被引:7
|
作者
Pota, Marco [1 ]
De Pietro, Giuseppe [1 ]
Esposito, Massimo [1 ]
机构
[1] Natl Res Council Italy, Inst High Performance Comp & Networking ICAR, Via P Castellino 111, I-80131 Naples, Italy
关键词
Industry; 4; 0; Autoencoders; Deep learning; Anomaly detection; Industrial oven; Industrial furnace; CLASSIFICATION;
D O I
10.1016/j.engappai.2023.106597
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection in industrial environments aims at detecting anomalies in the monitoring data of industrial machinery or equipment, as soon as possible, preferably presenting real-time alarms, to alert the monitoring staff and start maintenance activities timely. In this paper, the problem of anomaly detection of an industrial furnace is tackled, for the real-time recognition of punctual anomalies on multivariate time series. To this aim, a real-time anomaly detection approach is proposed: first, time series acquired from the real machinery are filtered, to select those of interest for possible anomalies, and pre-processed, to obtain sliding windows for real-time detection, then distinct univariate models are applied, to identify different anomaly types. For the application considered here, data regarding the machinery behaviour were available only for normal function-ing, thus an unsupervised approach is chosen. In particular, deep learning models based on autoencoders are used to detect punctual anomalies, by reconstructing each window and evaluating the reconstruction error of its last point. An extensive set of autoencoder models is proposed, with varying architecture in terms of type of model (vanilla/variational autoencoders), type of layers (fully connected/LSTM/BiLSTM), and hyperparameters (number of layers, intermediate sizes, BiLSTM type). Available data are split, and used to train the models, and to test them on the normal signal and on synthetic anomalies injected on it, which are of particular interest and were designed according to domain experts. Performances of the proposed models show differences among them, depending on the model architecture. The most efficient models, in terms of F1 score of detection and number of parameters, are identified by their t-test comparison, and the capability of detecting anomalies online is demonstrated. In particular, the proposed anomaly detection approach, including a selected autoencoder with LSTM layers, is able to correctly recognize normal trends, with very few false positives, and promptly give alarms as different anomalous trends appear.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Time-Series to Image-Transformed Adversarial Autoencoder for Anomaly Detection
    Kang, Jiyoung
    Kim, Minseok
    Park, Jinuk
    Park, Sanghyun
    IEEE ACCESS, 2024, 12 : 119671 - 119684
  • [42] Finding Needle in a Haystack: An Algorithm for Real-Time Log Anomaly Detection with Real-Time Learning
    Chitnis, Prachi
    Asthana, Abhaya
    2023 IEEE 34TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORKSHOPS, ISSREW, 2023, : 142 - 147
  • [43] Anomaly Detection using Variational Autoencoder with Spectrum Analysis for Time Series Data
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Hayashi, Eiji
    2020 JOINT 9TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2020 4TH INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2020,
  • [44] Performance comparison of parallel architectures for real-time control
    Daniel, HA
    Ruano, AEB
    MICROPROCESSORS AND MICROSYSTEMS, 1999, 23 (06) : 325 - 336
  • [45] MODERN FIELDBUS COMMUNICATION ARCHITECTURES FOR REAL-TIME INDUSTRIAL APPLICATIONS
    KOUBIAS, SA
    PAPADOPOULOS, GD
    COMPUTERS IN INDUSTRY, 1995, 26 (03) : 243 - 252
  • [46] Robust Unsupervised Anomaly Detection With Variational Autoencoder in Multivariate Time Series Data
    Yokkampon, Umaporn
    Mowshowitz, Abbe
    Chumkamon, Sakmongkon
    Hayashi, Eiji
    IEEE ACCESS, 2022, 10 : 57835 - 57849
  • [47] Autoencoder-based Anomaly Detection for Time Series Data in Complex Systems
    Gong, Xundong
    Liao, Shibo
    Hu, Fei
    Hu, Xiaoqing
    Liu, Chunshan
    2022 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, APCCAS, 2022, : 428 - 433
  • [48] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [49] Developing Novel Activation Functions in Time Series Anomaly Detection with LSTM Autoencoder
    Mercioni, Marina Adriana
    Holban, Stefan
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 73 - 78
  • [50] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72