Ab initio no-core shell-model description of 10-14C isotopes

被引:7
|
作者
Choudhary, Priyanka [1 ]
Srivastava, Praveen C. [1 ]
Gennari, Michael [2 ,3 ]
Navratil, Petr [3 ]
机构
[1] Indian Inst Technol Roorkee, Dept Phys, Roorkee 247667, India
[2] Univ Victoria, 3800 Finnerty Rd, Vicotria, BC V8P 5C2, Canada
[3] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NUCLEI;
D O I
10.1103/PhysRevC.107.014309
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a systematic study of the C10-14 isotopes within the ab initio no-core shell-model theory. We apply four different realistic nucleon-nucleon (NN) interactions: (i) the charge-dependent Bonn 2000 (CDB2K) potential; (ii) the inside nonlocal outside Yukawa (INOY) potential; (iii) the next-to-next-to-next-to-leading order ((NLO)-L-3) potential; and (iv) the optimized next-to-next-to-leading order ((NLOopt)-L-2) potential. We report the low-lying energy spectra of both positive- and negative-parity states for C10-14 isotopes and investigate the level structures. We also calculate electromagnetic properties such as transition strengths, quadrupole moments, and magnetic moments. The dependence of point-proton radii on the harmonic-oscillator frequency and basis space is shown. We present calculations of the translation invariant one-body density matrix in the no-core shell-model and discuss isotopic trends in the density distribution. The maximum basis space reached is 10h Omega for C-10 and 8h Omega for C11-14, with a maximum M-scheme dimension of 1.3 x 10(9) for C-10. We found that, while the INOY interaction gives the best description of the ground-state energies, the (NLO)-L-3 interaction best reproduces the point-proton radii.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Ab initio No-Core Shell Model --Recent results and future prospects
    J. P. Vary
    O. V. Atramentov
    B. R. Barrett
    M. Hasan
    A. C. Hayes
    R. Lloyd
    A. I. Mazur
    P. Navrátil
    A. G. Negoita
    A. Nogga
    W. E. Ormand
    S. Popescu
    B. Shehadeh
    A. M. Shirokov
    J. R. Spence
    I. Stetcu
    S. Stoica
    T. A. Weber
    S. A. Zaytsev
    The European Physical Journal A - Hadrons and Nuclei, 2005, 25 : 475 - 480
  • [32] Ab initio No-core shell model -: Recent results and future prospects
    Vary, JP
    Atramentov, OV
    Barrett, BR
    Hasan, M
    Hayes, AC
    Lloyd, R
    Mazur, AI
    Navrátil, P
    Negoita, AG
    Nogga, A
    Ormand, WE
    Popescu, S
    Shehadeh, B
    Shirokov, AM
    Spence, JR
    Stetcu, I
    Stoica, S
    Weber, TA
    Zaytsev, SA
    EUROPEAN PHYSICAL JOURNAL A, 2005, 25 : 475 - 480
  • [33] Symmetry-adapted ab initio no-core shell model calculations for 12C
    Launey, K. D.
    Dreyfuss, A. C.
    Dytrych, T.
    Draayer, J. P.
    Langr, D.
    Maris, P.
    Vary, J. P.
    Bahri, C.
    10TH INTERNATIONAL CONFERENCE ON CLUSTERING ASPECTS OF NUCLEAR STRUCTURE AND DYNAMICS (CLUSTER'12), 2013, 436
  • [34] AUXILIARY POTENTIAL IN NO-CORE SHELL-MODEL CALCULATIONS
    ZHENG, DC
    BARRETT, BR
    VARY, JP
    MUTHER, H
    PHYSICAL REVIEW C, 1995, 51 (05) : 2471 - 2476
  • [35] Recent developments in no-core shell-model calculations
    Navratil, Petr
    Quaglioni, Sofia
    Stetcu, Ionel
    Barrett, Bruce R.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2009, 36 (08)
  • [36] EFFECTIVE SHELL-MODEL INTERACTION FOR NO-CORE MODEL SPACES
    JAQUA, L
    HALSE, P
    BARRETT, BR
    VARY, JP
    NUCLEAR PHYSICS A, 1994, 571 (02) : 242 - 252
  • [37] Ab initio many-body perturbation theory and no-core shell model
    胡柏山
    吴强
    许甫荣
    Chinese Physics C, 2017, 41 (10) : 81 - 90
  • [38] Ab initio many-body perturbation theory and no-core shell model
    胡柏山
    吴强
    许甫荣
    Chinese Physics C, 2017, (10) : 81 - 90
  • [39] Ab initio many-body perturbation theory and no-core shell model
    Hu, B. S.
    Wu, Q.
    Xu, F. R.
    CHINESE PHYSICS C, 2017, 41 (10)
  • [40] AB INITIO NO-CORE SHELL MODEL CALCULATIONS IN SU(3)-SCHEME BASIS
    Dytrych, T.
    Draayer, J. P.
    Sviratcheva, K. D.
    Langr, D.
    CAPTURE GAMMA-RAY SPECTROSCOPY AND RELATED TOPICS, 2013, : 151 - 157