Programmable synthetic biomolecular condensates for cellular control

被引:54
|
作者
Dai, Yifan [1 ,2 ]
Farag, Mina [3 ]
Lee, Dongheon [1 ]
Zeng, Xiangze [3 ]
Kim, Kyeri [1 ]
Son, Hye-in [1 ]
Guo, Xiao [1 ]
Su, Jonathan [1 ]
Peterson, Nikhil [1 ]
Mohammed, Javid [4 ]
Ney, Max [1 ]
Shapiro, Daniel Mark [1 ]
Pappu, Rohit V. [3 ]
Chilkoti, Ashutosh [1 ,2 ]
You, Lingchong [1 ,2 ]
机构
[1] Duke Univ, Pratt Sch Engn, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Duke Ctr Quantitat Biodesign, Durham, NC 27708 USA
[3] Washington Univ St Louis, Ctr Biomol Condensates CBC, James McKelvey Sch Engn, Dept Biomed Engn, St Louis, MO USA
[4] Duke Univ, Dept Immunol, Durham, NC USA
关键词
PHASE-SEPARATION; DISORDERED PROTEINS; AROMATIC RESIDUES; SEQUENCE; BEHAVIOR; GENE; MECHANISM; DYNAMICS; BACTERIA; INSIGHTS;
D O I
10.1038/s41589-022-01252-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The formation of biomolecular condensates mediated by a coupling of associative and segregative phase transitions plays a critical role in controlling diverse cellular functions in nature. This has inspired the use of phase transitions to design synthetic systems. While design rules of phase transitions have been established for many synthetic intrinsically disordered proteins, most efforts have focused on investigating their phase behaviors in a test tube. Here, we present a rational engineering approach to program the formation and physical properties of synthetic condensates to achieve intended cellular functions. We demonstrate this approach through targeted plasmid sequestration and transcription regulation in bacteria and modulation of a protein circuit in mammalian cells. Our approach lays the foundation for engineering designer condensates for synthetic biology applications.
引用
收藏
页码:518 / +
页数:30
相关论文
共 50 条
  • [31] Synthetic biomolecular condensates enhance translation from a target mRNA in living cells
    Shapiro, Daniel Mark
    Deshpande, Sonal
    Eghtesadi, Seyed Ali
    Zhong, Miranda
    Fontes, Cassio Mendes
    Fiflis, David
    Rohm, Dahlia
    Min, Junseon
    Kaur, Taranpreet
    Peng, Joanna
    Ney, Max
    Su, Jonathan
    Dai, Yifan
    Asokan, Aravind
    Gersbach, Charles A.
    Chilkoti, Ashutosh
    NATURE CHEMISTRY, 2025, 17 (03) : 448 - 456
  • [32] Lightning the condensates: The electrochemical functions of biomolecular condensates
    Dai, Yifan
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 310A - 310A
  • [33] Biomolecular Condensates in Contact with Membranes
    Mangiarotti, Agustin
    Dimova, Rumiana
    ANNUAL REVIEW OF BIOPHYSICS, 2024, 53 : 319 - 341
  • [34] Biomolecular condensates and disease pathogenesis
    Ke, Ruan
    Ge, Bai
    Fang, Yanshan
    Dan, Li
    Li, Tingting
    Liu, Xingguo
    Lu, Boxun
    Qing, Lu
    Zhou, Songyang
    Sun, Shuguo
    Zheng, Wang
    Xin, Zhang
    Wen, Zhou
    Hong, Zhang
    SCIENCE CHINA-LIFE SCIENCES, 2024, 67 (09) : 1792 - 1832
  • [35] Membranes regulate biomolecular condensates
    Lindsay B. Case
    Nature Cell Biology, 2022, 24 : 404 - 405
  • [36] Nucleation landscape of biomolecular condensates
    Shunsuke F. Shimobayashi
    Pierre Ronceray
    David W. Sanders
    Mikko P. Haataja
    Clifford P. Brangwynne
    Nature, 2021, 599 : 503 - 506
  • [37] Membranes regulate biomolecular condensates
    Case, Lindsay B.
    NATURE CELL BIOLOGY, 2022, 24 (04) : 404 - 405
  • [38] Interface resistance of biomolecular condensates
    Jiang, Yoyo
    Pyo, Andrew
    Brangwynne, Clifford P.
    Stone, Howard A.
    Wingreen, Ned S.
    Zhang, Yaojun
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 442A - 442A
  • [39] The many phases of biomolecular condensates
    不详
    NATURE CHEMISTRY, 2024, 16 (07) : 1035 - 1036
  • [40] Biomolecular condensates in photosynthesis and metabolism
    Wunder, Tobias
    Mueller-Cajar, Oliver
    CURRENT OPINION IN PLANT BIOLOGY, 2020, 58 : 1 - 7