Scale-Dependent Drivers of Marine Heatwaves Globally

被引:5
|
作者
Bian, Ce [1 ,2 ]
Jing, Zhao [1 ,2 ,3 ]
Wang, Hong [1 ,2 ,3 ]
Wu, Lixin [1 ,2 ,3 ]
机构
[1] Ocean Univ China, Frontiers Sci Ctr Deep Ocean Multispheres & Earth, Qingdao, Peoples R China
[2] Ocean Univ China, Key Lab Phys Oceanog, Qingdao, Peoples R China
[3] Laoshan Lab, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
marine heatwaves; drivers; spatial scales; WESTERN-AUSTRALIA; IMPACTS; OCEAN; ATLANTIC; FEEDBACK;
D O I
10.1029/2023GL107306
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Marine heatwaves (MHWs) are prolonged extreme warm water events, threatening marine ecosystems. Understanding drivers of MHWs over the global ocean is essential for their forecast. Here, we use an eddy-resolving coupled global climate model with improved realism of MHWs to evaluate the drivers of MHWs at different spatial scales, that is, MHWs defined based on temperature anomalies at different spatial scales. The properties of MHWs are scale-dependent, being generally weaker, less frequent, and longer with increasing spatial scales. The primary driver of MHWs shifts from local oceanic intrinsic advection to atmospheric forcing as their spatial scale becomes larger. The transition spatial scale between the ocean and atmosphere-driven regimes varies geographically, being larger in eddy-rich regions but smaller in gyre interior. This study suggests the complicated dynamics of MHWs at different spatial scales and provides guidance on improving their forecast capacity. Increasing greenhouse gas emission causes ocean warming, triggering frequent extreme warm water events known as marine heatwaves (MHWs). An in-depth knowledge of the drivers of MHWs globally is essential for improving their forecast capacity. In this study, we demonstrate the dominant drivers of MHWs vary with their spatial scales based on a state-of-the-art high-resolution global climate simulation. Smaller-scale MHWs are primarily driven by oceanic processes, whereas atmospheric processes play a dominant role in driving larger-scale MHWs. The transition spatial scale between the ocean and atmosphere-driven regimes is region-dependent. It is generally larger in regions with energetic ocean currents such as the western boundary currents as well as their extension, but smaller in the gyre interior where the ocean is more quiescent. Dominant drivers of Marine heatwaves (MHWs) shift from oceanic to atmospheric processes as their spatial scale increases The transition spatial scale from ocean to atmosphere-driven MHWs varies geographically The transition spatial scale is larger in eddy-rich regions while smaller in gyre interior
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Scale-Dependent Drivers of Air-Sea CO2 Flux Variability
    Fay, Amanda R.
    Carroll, Dustin
    Mckinley, Galen A.
    Menemenlis, Dimitris
    Zhang, Hong
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (20)
  • [32] Marine heatwaves are occurring globally below the sea surface with increasing frequency
    Li, Furong
    Jing, Zhao
    NATURE GEOSCIENCE, 2023, 16 (12) : 1082 - 1083
  • [33] Scale-Dependent Effects of Plant Diversity Drivers Across Different Grassland Habitats in Ukraine
    Buzhdygan, Oksana
    Baldauf, Selina
    Borovyk, Dariia
    Vynokurov, Denys
    Ladouceur, Emma
    Chusova, Olha
    Iemelianova, Svitlana
    Budzhak, Vasyl
    Tietjen, Britta
    Bezrodnova, Olga
    Bezsmertna, Olesya
    Chorney, Illya
    Dembicz, Iwona
    Dengler, Juergen
    Didukh, Yakiv
    Janisova, Monika
    Khodosovtsev, Oleksandr
    Kucher, Oksana
    Moysiyenko, Ivan
    Tokariuk, Alla
    Vasheniak, Iuliia
    Yavorska, Olena
    Chase, Jonathan
    Kuzemko, Anna
    ECOLOGY AND EVOLUTION, 2025, 15 (02):
  • [35] Stereo dynamics are not scale-dependent
    Hess, RF
    Wilcox, LM
    VISION RESEARCH, 2006, 46 (12) : 1911 - 1923
  • [36] SUPERSYMMETRY AND SCALE-DEPENDENT ANALYSIS
    IKEDA, M
    PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (01): : 249 - 258
  • [37] Scale-dependent stochastic quantization
    Altaisky, Mikhail
    Frontiers of Fundamental Physics, 2006, : 155 - 161
  • [38] Scale-dependent landscape epidemiology
    Skelsey, P.
    PHYTOPATHOLOGY, 2011, 101 (06) : S167 - S167
  • [39] Scale-dependent fracture networks
    Forstner, Stephanie R.
    Laubach, Stephen E.
    JOURNAL OF STRUCTURAL GEOLOGY, 2022, 165
  • [40] Scale-dependent fractal geometry
    Catrakis, HJ
    Dimotakis, PE
    MIXING: CHAOS AND TURBULENCE, 1999, 373 : 145 - 162