Bicolor Regulation of an Ultrathin Absorber in the Mid-Wave Infrared and Long-Wave Infrared Regimes

被引:9
|
作者
Jiang, Xinpeng [1 ]
Wang, Xinfei [2 ]
Nong, Jie [1 ]
Zhu, Gangyi [3 ]
He, Xin [1 ]
Du, Te [1 ]
Ma, Hansi [1 ]
Zhang, Zhaojian [1 ]
Chen, Huan [1 ]
Yu, Yang [1 ]
Liu, Dongqing [2 ]
Yan, Peiguang [4 ]
Wu, Jiagui [5 ]
Zhang, Zhenfu [1 ]
Yang, Junbo [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Ctr Mat Sci, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Sci & Technol Adv Ceram Fibers & Composites Lab, Changsha 410073, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Peter Grunberg Res Ctr, Nanjing 210003, Peoples R China
[4] Coll Phys & Optoelect Engn, Shenzhen Univ, Shenzhen 518060, Peoples R China
[5] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
mid-wave infrared; long-wave infrared; thermalphotonics; bicolor thermal imaging; thermal radiationregulation; FILMS; METAMATERIAL; TEMPERATURE; CAMOUFLAGE;
D O I
10.1021/acsphotonics.3c01307
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal radiation in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) regions profoundly influences human lives. However, most thermal radiation regulators exhibit mismatched spectral characteristics and multiband incompatibility. Here, we introduce a new type of ultrathin absorber & horbar;a dual-band dynamic optical coating (DBDOC)& horbar;to realize the independent regulation of MWIR and LWIR regions. A new framework of thermal radiation regulation is employed to maximize the independent emissivity performance of the DBDOC in the MWIR and LWIR regions. The bicolor emissivity changes for the DBDOC are 0.80 and 0.46 in the MWIR (3-5 mu m) and LWIR (8-14 mu m) regions, respectively, with slight emissivity changes of 0.25 and 0.03 in the opposite regions. We experimentally demonstrate bicolor thermal imaging with different MWIR and LWIR information via independent emissivity regulation of MWIR and LWIR regions. We further validate gray-scale thermal imaging regulation in the LWIR region and the associated dynamic process at different heating temperatures in the MWIR region. The results demonstrate the experimental realization of independent thermal radiation regulation in the MWIR and LWIR regimes.
引用
收藏
页码:218 / 229
页数:12
相关论文
共 50 条
  • [21] Comparison of plane-to-sky contrast and detection range performance in the visible, short-wave infrared, mid-wave infrared, and long-wave infrared bands
    Cavanaugh, Richard
    Jordan, Shane
    Rubis, Jordan
    Ledbetter, Jamie
    Driggers, Ronald
    APPLIED OPTICS, 2024, 63 (19) : 5088 - 5098
  • [22] Infrared Mid-Wave and Long-Wave Image Fusion Based on FABEMD and Improved Local Energy Window
    Cui Xiao-rong
    Shen Tao
    Huang Jian-lu
    Sun Bin-bin
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41 (07) : 2043 - 2049
  • [23] Comparison of Long-Wave and Mid-Wave Infrared Imaging Modalities for Photothermal Coherence Tomography of Human Teeth
    Thapa, Damber
    Welch, Robert
    Dabas, Rimple Poonia
    Salimi, Mohammahhossein
    Tavakolian, Pantea
    Sivagurunathan, Koneswaran
    Ngai, Kimberly
    Huang, Bo
    Finer, Yoav
    Abrams, Stephen
    Mandelis, Andreas
    Tabatabaei, Nima
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (09) : 2755 - 2766
  • [24] Data Fusion for the Prediction of Elemental Concentrations in Polymetallic Sulphide Ore Using Mid-Wave Infrared and Long-Wave Infrared Reflectance Data
    Desta, Feven
    Buxton, Mike
    Jansen, Jeroen
    MINERALS, 2020, 10 (03)
  • [25] Long-wave and mid-wave infrared micro-bolometers with gold black or wavelength-selective absorbers
    Peale, Robert E.
    IMAGE SENSING TECHNOLOGIES: MATERIALS, DEVICES, SYSTEMS, AND APPLICATIONS V, 2018, 10656
  • [26] Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission
    Tao, Guangming
    Shabahang, Soroush
    Ren, He
    Khalilzadeh-Rezaie, Farnood
    Peale, Robert E.
    Yang, Zhiyong
    Wang, Xunsi
    Abouraddy, Ayman F.
    OPTICS LETTERS, 2014, 39 (13) : 4009 - 4012
  • [27] Mid-Wave and Long-Wave Infrared Signature Model and Measurements of Power Lines Against Atmospheric Path Radiance
    Leslie, Patrick
    Furxhi, Orges
    Short, Robert
    Grimming, Robert
    Driggers, Ronals
    2021 IEEE RESEARCH AND APPLICATIONS OF PHOTONICS IN DEFENSE CONFERENCE (RAPID), 2021,
  • [28] Mid-wave and long-wave infrared signature model and measurement of power lines against atmospheric path radiance
    Leslie, Patrick
    Furxhi, Orges
    Short, Robert
    Grimming, Robert
    Driggers, Ronals
    OPTICS EXPRESS, 2022, 30 (01) : 563 - 575
  • [29] GaMnAs for Mid-Wave Infrared Photodetection
    Lao, Yan-Feng
    Perera, A. G. Unil
    Wang, H. L.
    Zhao, J. H.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (20) : 2261 - 2264
  • [30] Mid-infrared, long-wave infrared, and terahertz photonics: introduction
    Jain, Ravinder K.
    Hoffman, Anthony J.
    Jepsen, Peter Uhd
    Liu, Peter Q.
    Turchinovich, Dmitry
    Vitiello, Miriam Serena
    OPTICS EXPRESS, 2020, 28 (09): : 14169 - 14175