The Poisson equation on compact Ricci solitons and Ricci-harmonic solitons

被引:0
|
作者
Costa Filho, Wagner Oliveira [1 ]
机构
[1] Univ Fed Alagoas, Campus Arapiraca, BR-57309005 Arapiraca, AL, Brazil
关键词
Shrinking Ricci solitons; Poisson equation; Ricci-harmonic solitons;
D O I
10.1007/s00022-023-00675-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short note, we derive another proof of a theorem due to Chen and Deshmukh (Balk J Geom Appl 19(1):13-21, 2014) on a characterization of compact shrinking trivial Ricci solitons with scalar curvature satisfying a Poisson equation. Moreover, as a new result, we recall that a version of this theorem holds to the case of compact domain manifolds of shrinking Ricci-harmonic solitons.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] RIGIDITY CHARACTERIZATION OF COMPACT RICCI SOLITONS
    Li, Fengjiang
    Zhou, Jian
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1475 - 1488
  • [32] Weyl Scalars on Compact Ricci Solitons
    Catino, G.
    Mastrolia, P.
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (04) : 3328 - 3344
  • [33] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [34] Weyl Scalars on Compact Ricci Solitons
    G. Catino
    P. Mastrolia
    The Journal of Geometric Analysis, 2019, 29 : 3328 - 3344
  • [35] ON RICCI-HARMONIC METRICS
    Wang, Lin Feng
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 417 - 437
  • [36] Ricci solitons: the equation point of view
    Eminenti, Manolo
    La Nave, Gabriele
    Mantegazza, Carlo
    MANUSCRIPTA MATHEMATICA, 2008, 127 (03) : 345 - 367
  • [37] Ricci solitons: the equation point of view
    Manolo Eminenti
    Gabriele La Nave
    Carlo Mantegazza
    manuscripta mathematica, 2008, 127 : 345 - 367
  • [38] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [39] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510
  • [40] FROM INFINITESIMAL HARMONIC TRANSFORMATIONS TO RICCI SOLITONS
    Stepanov, Sergey E.
    Tsyganok, Irina I.
    Mikes, Josef
    MATHEMATICA BOHEMICA, 2013, 138 (01): : 25 - 36