Numerical simulation of two-phase flow in gas diffusion layer and gas channel of proton exchange membrane fuel cells

被引:9
|
作者
Yang, Danan [1 ]
Garg, Himani [1 ]
Andersson, Martin [1 ]
机构
[1] Lund Univ, Fac Engn, Dept Energy Sci, POB 118, SE-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Gas diffusion layer; Stochastic reconstruction; Carbon fiber diameter; Water saturation; Volume-of-fluid method; THROUGH-PLANE; DROPLET DETACHMENT; WATER TRANSPORT; PERMEABILITY; SURFACE; PERFORMANCE; INPLANE; IMPACT; VOLUME;
D O I
10.1016/j.ijhydene.2023.01.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid water within the cathode Gas Diffusion Layer (GDL) and Gas Channel (GC) of Proton Exchange Membrane Fuel Cells (PEMFCs) is strongly coupled to gas transport properties, thereby affecting the electrochemical conversion rates. In this study, the GDL and GC re-gions are utilized as the simulation domain, which differs from previous studies that only focused on any one of them. A Volume of Fluid (VOF) method is adopted to numerically investigate the two-phase flow (gas and liquid) behavior, e.g., water transport pattern evolution, water coverage ratio as well as local and total water saturation. To obtain GDL geometries, an in-house geometry-based method is developed for GDL reconstruction. Furthermore, to study the effect of GDL carbon fiber diameter, the same procedure is used to reconstruct three GDL structures by varying the carbon fiber diameter but keeping the porosity and geometric dimensions constant. The wall wettability is introduced with static contact angles at carbon fiber surfaces and channel walls. The results show that the GDL fiber microstructure has a significant impact on the two-phase flow patterns in the cathode field. Different stages of two-phase flow pattern evolution in both cathode domains are observed. The liquid water in the GDL experiences water invasion, spreading, and rising, followed by the droplet breakthrough in the GDL/GC interface. In the GC, the water droplets randomly experience accumulation, combination, attachment, and detachment. Due to the difference in surface wettability, the water coverage of the GDL/GC interface is smaller than that of the channel side and top walls. It is also found that the water saturation inside
引用
收藏
页码:15677 / 15694
页数:18
相关论文
共 50 条
  • [31] Numerical simulation for metal foam two-phase flow field of proton exchange membrane fuel cell
    Bao, Zhiming
    Niu, Zhiqiang
    Jiao, Kui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) : 6229 - 6244
  • [32] Scale effect and two-phase flow in a thin hydrophobic porous layer. Application to water transport in gas diffusion layers of proton exchange membrane fuel cells
    Rebai, M.
    Prat, M.
    JOURNAL OF POWER SOURCES, 2009, 192 (02) : 534 - 543
  • [33] TWO-PHASE FLOW IN A GAS FLOW CHANNEL OF POLYMER ELECTROLYTE FUEL CELLS
    Cho, Sung Chan
    Wang, Yun
    PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011, 2012, : 575 - 581
  • [34] Uneven gas diffusion layer intrusion in gas channel arrays of proton exchange membrane fuel cell and its effects on flow distribution
    Kandlikar, S. G.
    Lu, Z.
    Lin, T. Y.
    Cooke, D.
    Daino, M.
    JOURNAL OF POWER SOURCES, 2009, 194 (01) : 328 - 337
  • [35] Ultrasonic spot welds of gas diffusion layer to proton exchange membrane of fuel cells
    Dang, Quang Khoa
    Chang, Pei-Lun
    Dang, Thien Ngon
    Weng, Fangbor
    Uan, Jun Yen
    Wang, Dung-An
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 266 : 208 - 216
  • [36] Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells
    Yu, Shuchun
    Li, Xiaojin
    Li, Jin
    Liu, Sa
    Lu, Wangting
    Shao, Zhigang
    Yi, Baolian
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 301 - 306
  • [38] Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells
    Fadzillah, D. M.
    Rosli, M. I.
    Talib, M. Z. M.
    Kamarudin, S. K.
    Daud, W. R. W.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 77 : 1001 - 1009
  • [39] The effect of different gas diffusion layer porosity on proton exchange membrane fuel cells
    Turkmen, Anil Can
    Celik, Cenk
    FUEL, 2018, 222 : 465 - 474
  • [40] Hierarchy carbon paper for the gas diffusion layer of proton exchange membrane fuel cells
    Du, Chunyu
    Wang, Baorong
    Cheng, Xinqun
    JOURNAL OF POWER SOURCES, 2009, 187 (02) : 505 - 508