Spatiotemporal variations and the driving factors of PM2.5 in Xi'an, China between 2004 and 2018

被引:8
|
作者
Tuheti, Abula [1 ,2 ]
Deng, Shunxi [1 ,2 ]
Li, Jianghao [1 ,2 ]
Li, Guanghua [1 ,2 ]
Lu, Pan [1 ,2 ]
Lu, Zhenzhen [1 ,2 ]
Liu, Jiayao [1 ,2 ]
Du, Chenhui [3 ]
Wang, Wei [4 ,5 ]
机构
[1] Changan Univ, Sch Water & Environm, Xian 710064, Peoples R China
[2] Changan Univ, Key Lab Subsurface Hydrol & Ecol Effects Arid Reg, Minist Educ, Xian 710064, Peoples R China
[3] Changan Univ, Sch Geol Engn & Geomat, Xian 710064, Shaanxi, Peoples R China
[4] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China
[5] Chinese Acad Sci, Res Ctr Ecol & Environm Cent Asia, Urumqi 830011, Peoples R China
关键词
Spatio-temporal variation; Driving factors; Geo-detector; Wavelet analysis; FINE PARTICULATE MATTER; SPATIAL-TEMPORAL CHARACTERISTICS; METEOROLOGICAL FACTORS; AIR-QUALITY; POLLUTION; EMISSIONS; POLLUTANTS; REGRESSION; ECONOMY; IMPACT;
D O I
10.1016/j.ecolind.2022.109802
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
High-intensity human socioeconomic activities in Xi'an have caused fine particulate matter (PM2.5) pollution. Understanding the spatial and temporal patterns and key factors influencing PM2.5 concentration was the basic step for taking targeted measures. Thus, spatial analysis techniques are used to reveal the temporal and spatial distribution characteristics of PM2.5 in Xi'an over a long time series; wavelet analysis and Geo-detector models are applied to assess the strength of the association between meteorological and socio-economic conditions on PM2.5 concentrations. The results illustrated that the average PM2.5 concentration was 40.13 mu g/m3 in 2004 and peaked at 62.06 mu g/m3 in 2011, before failing to 38.77 mu g/m3 by 2018. The PM2.5 concentration distribution had a characteristic of high in winter and autumn but low in spring and summer, presenting a U-shaped profile. The main distribution of PM2.5 concentrations was oriented in a northeast-southwest direction, with obvious spatial autocorrelation and spatial aggregation characteristics. The resonance cycles of the meteorological and socio-economic elements and PM2.5 concentrations were synchronous and divergent at different scales. U-wind was the influencing factor on PM2.5 concentration with a positive correlation coefficient of 0.9. Before 2011, the inter-action of temperature (Tem) and relative humidity (RH) had the greatest impact on PM2.5 concentrations. Additionally, the land use and cover change (LUCC) coupled with other factors had a large influence on PM2.5 concentrations. These relationships can shed new light on the underlying mechanisms of PM2.5 contamination at the city level, assisting relevant departments in developing effective PM2.5 pollution management strategies.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Identifying the spatial effects and driving factors of urban PM2.5 pollution in China
    Cheng, Zhonghua
    Li, Lianshui
    Liu, Jun
    ECOLOGICAL INDICATORS, 2017, 82 : 61 - 75
  • [22] Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-2013
    Ma, Zongwei
    Hu, Xuefei
    Sayer, Andrew M.
    Levy, Robert
    Zhang, Qiang
    Xue, Yingang
    Tong, Shilu
    Bi, Jun
    Huang, Lei
    Liu, Yang
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2016, 124 (02) : 184 - 192
  • [23] Variations Variations of bacteria and fungi in PM2.5 in Beijing, China
    Du, Pengrui
    Du, Rui
    Ren, Weishan
    Lu, Zedong
    Zhang, Yang
    Fu, Pingqing
    ATMOSPHERIC ENVIRONMENT, 2018, 172 : 55 - 64
  • [24] Spatiotemporal pattern analysis of PM2.5 and the driving factors in the middle Yellow River urban agglomerations
    Mi, Yifeng
    Sun, Ken
    Li, Li
    Lei, Yalin
    Wu, Sanmang
    Tang, Wei
    Wang, Yizhen
    Yang, Jingjing
    JOURNAL OF CLEANER PRODUCTION, 2021, 299
  • [25] Spatial patterns of the diurnal variations of PM2.5 and their influencing factors across China
    Liu, Junli
    Wang, Siyuan
    Zhu, Kemin
    Hu, Jinghao
    Li, Runkui
    Song, Xianfeng
    ATMOSPHERIC ENVIRONMENT, 2024, 318
  • [26] The spatiotemporal relationship between PM2.5 and aerosol optical depth in China: influencing factors and implications for satellite PM2.5 estimations using MAIAC aerosol optical depth
    He, Qingqing
    Wang, Mengya
    Yim, Steve Hung Lam
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2021, 21 (24) : 18375 - 18391
  • [27] Spatiotemporal variations and mechanism of PM2.5 pollution in urban area: The case of Guiyang, Guizhou, China
    Li, Song
    Zhou, Chenghu
    Qu, Mingxin
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 341
  • [28] Satellite-derived spatiotemporal PM2.5 concentrations and variations from 2006 to 2017 in China
    Xue, Wenhao
    Zhang, Jing
    Zhong, Chao
    Ji, Duoying
    Huang, Wei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 712
  • [29] Monitoring the Influence of Industrialization and Urbanization on Spatiotemporal Variations of AQI and PM2.5 in Three Provinces, China
    Chen, Hu
    Deng, Guoqu
    Liu, Yiwen
    ATMOSPHERE, 2022, 13 (09)
  • [30] Analysis of Spatiotemporal Variation and Influencing Factors of PM2.5 in China Based on Multisource Data
    Kan, Xi
    Liu, Xu
    Zhou, Zhou
    Zhang, Yonghong
    Zhu, Linglong
    Sian, Kenny Thiam Choy Lim Kam
    Liu, Qi
    SUSTAINABILITY, 2023, 15 (19)