Historical review and future prospect for researches on very high cycle fatigue of metallic materials

被引:14
|
作者
Sakai, Tatsuo [1 ,2 ]
机构
[1] Ritsumeikan Univ, Res Org Sci & Technol, Kusatsu, Japan
[2] Ritsumeikan Univ, Res Org Sci & Technol, 525 8577 Japan, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
关键词
crack initiation mechanism; duplex S-N characteristics; future prospect; historical review; metallic materials; very high cycle fatigue; SUBSURFACE CRACK INITIATION; ROLLING-CONTACT FATIGUE; COMPETING FAILURE MODES; HIGH-STRENGTH STEELS; CR-NI-STEELS; BEARING STEEL; VHCF REGIME; PROPAGATION PROPERTIES; DEFORMATION-BEHAVIOR; FRACTURE-MECHANICS;
D O I
10.1111/ffe.13885
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Since the first paper on the fatigue of metallic materials by J. Albert in 1837, tremendous numbers of papers have been published in various journals by many researchers all over the world. Based on such a long history, several papers on the very high cycle fatigue (VHCF) in the life-time longer than 10(7) cycles had appeared in some journals during the period of 1980's. One characteristic finding in these works is the fact that the metallic material can fail even at the stress level lower than the conventional fatigue limit. This fact means that the conventional fatigue design of mechanical structures cannot give the safety of the practical products in the very high cycle regime. Due to this fact, fatigue properties of structural materials in very long life regime has become an important subject; and a lot of studies have been carried out, and many important results have been accumulated until now. Typical aspects on VHCF property are summarized as follows: (1) the fatigue crack tends to occur around the interior inclusion, (2) fine granular area (FGA) is formed around such an inclusion, and (3) duplex S-N characteristics appear in the VHCF regime. In this paper, a brief historical review together with the future prospect on the very high cycle fatigue of metallic materials is attempted for the sake of reference to facilitate the research in this area.
引用
收藏
页码:1217 / 1255
页数:39
相关论文
共 50 条
  • [41] An understanding of very high cycle fatigue of metals
    Marines, I
    Bin, X
    Bathias, C
    INTERNATIONAL JOURNAL OF FATIGUE, 2003, 25 (9-11) : 1101 - 1107
  • [42] Cumulative model of very high cycle fatigue
    Stepanskiy, L. G.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2012, 35 (06) : 513 - 522
  • [43] Step loading for very high cycle fatigue
    Nicholas, T
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2002, 25 (8-9) : 861 - 869
  • [44] Special subject on very high cycle fatigue
    Qingyuan Wang~(a)) Department of Mechanics and Engineering Science
    Theoretical & Applied Mechanics Letters, 2012, 2 (03) : 3 - 4
  • [45] Very High Cycle Fatigue - Testing Methods
    Horst, P.
    Adam, T. J.
    Lewandrowski, M.
    Begemann, B.
    Nolte, F.
    39TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: FATIGUE OF COMPOSITE MATERIALS: MICROSTRUCTURE, MECHANICS AND METHODS, 2018, 2018, 388
  • [46] Advances in Very High Cycle Fatigue Preface
    Christ, Hans-Juergen
    INTERNATIONAL JOURNAL OF FATIGUE, 2011, 33 (01) : 1 - 1
  • [47] Special subject on very high cycle fatigue
    Wang, Qingyuan
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2012, 2 (03)
  • [48] Very high cycle fatigue measuring techniques
    Stanzl-Tschegg, Stefanie
    INTERNATIONAL JOURNAL OF FATIGUE, 2014, 60 : 2 - 17
  • [49] Fatigue characteristics of bearing steel in very high cycle fatigue
    Chang-Min Suh
    Jong-Hyoung Kim
    Journal of Mechanical Science and Technology, 2009, 23 : 420 - 425
  • [50] MICROSTRUCTURE AND FATIGUE BEHAVIOUR IN THE VERY HIGH CYCLE FATIGUE REGIME
    Zimmermann, M.
    Stoecker, C.
    Christ, H. -J.
    FATIGUE OF MATERIALS: ADVANCES AND EMERGENCES IN UNDERSTANDING, 2010, : 299 - 315