Leveraging Machine Learning to Unveil the Critical Role of Geographic Factors in COVID-19 Mortality in Mexico

被引:0
|
作者
Maldonado-Sifuentes, Christian E. [1 ]
Vargas-Santiago, Mariano [1 ]
Leon-Velasco, Diana A. [2 ]
Ortega-Garcia, M. Cristina [3 ]
Ledo-Mezquita, Yoel [2 ]
Castillo-Velasquez, Francisco A. [4 ]
机构
[1] Consejo Nacl Human Ciencia & Tecnol CONAHCYT, Mexico City, Mexico
[2] Inst Tecnol & Estudios Super Monterrey ITESM, Mexico City, Mexico
[3] Transdisciplinary Res Augmented Innovat Lab TRAI L, Mexico City, Mexico
[4] Univ Pontificia Mexico, Mexico City, Mexico
来源
COMPUTACION Y SISTEMAS | 2024年 / 28卷 / 01期
关键词
Diabetes; COVID-19; machine learning; SARS CoV-2; Cox; RMST;
D O I
10.13053/CyS-28-1-4908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present an in-depth analysis leveraging several renowned machine learning techniques, including Snap Random Forest, XGBoost, Extra Trees, and Snap Decision Trees, to characterize comorbidity factors influencing the Mexican population. Distinct from existing literature, our study undertakes a comprehensive exploration of algorithms within a defined search space, conducting experiments ranging from coarse to fine granularity. This approach, coupled with machine learning -driven feature enhancement, enables us to deeply characterize the factors most significantly affecting COVID-19 mortality rates within the Mexican demographic. Contrary to other studies, which obscure the identification of primary factors for local populations, our findings reveal that geographical factors such as residence location hold greater significance than even comorbidities, indicating that socioeconomic factors play a pivotal role in the survival outcomes of the Mexican population. This research not only contributes to the targeted understanding of COVID-19 mortality drivers in Mexico but also highlights the critical influence of socioeconomic determinants, offering valuable insights for public health strategies and policy formulation.
引用
收藏
页码:5 / 18
页数:14
相关论文
共 50 条
  • [1] Mortality Analysis of Patients with COVID-19 in Mexico Based on Risk Factors Applying Machine Learning Techniques
    Becerra-Sanchez, Aldonso
    Rodarte-Rodriguez, Armando
    Escalante-Garcia, Nivia I.
    Olvera-Gonzalez, Jose E.
    De la Rosa-vargas, Jose I.
    Zepeda-Valles, Gustavo
    Velasquez-Martinez, Emmanuel de J.
    [J]. DIAGNOSTICS, 2022, 12 (06)
  • [2] The impact of comorbidities and economic inequality on COVID-19 mortality in Mexico: a machine learning approach
    Mendez-Astudillo, Jorge
    [J]. FRONTIERS IN BIG DATA, 2024, 7
  • [3] Risk factors associated with COVID-19 mortality in Mexico
    Fomina, Anna
    Villa-Romero, Antonio
    de la Torre, Guadalupe S. Garcia
    Tirado, Laura L.
    Wong-Chew, Rosa M.
    [J]. GACETA MEDICA DE MEXICO, 2024, 160 (01): : 10 - 18
  • [4] Machine Learning for Mortality Analysis in Patients with COVID-19
    Sanchez-Montanes, Manuel
    Rodriguez-Belenguer, Pablo
    Serrano-Lopez, Antonio J.
    Soria-Olivas, Emilio
    Alakhdar-Mohmara, Yasser
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (22) : 1 - 20
  • [5] Modeling the Spread of COVID-19 by Leveraging Machine and Deep Learning Models
    Adnan, Muhammad
    Altalhi, Maryam
    Alarood, Ala Abdulsalam
    Uddin, M. Irfan
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (03): : 1857 - 1872
  • [6] Risk Factors for AKI and Mortality in COVID-19 in Western Mexico
    Garcia Rivera, Alejandro
    Katia Yuritzi, Rios C.
    Aguilar, Arantxa K.
    Villegas Gutierrez, Luz Yareli
    Elias Lopez, Marcos A.
    Rico Sanchez, Jesus A.
    Morales Guillen, Monica L.
    Montemayor Villacobos, Mauro G.
    Villanueva Macedo, Roxana
    Espinoza, Hugo B.
    Soto Rodriguez, Ramon A.
    Gutierrez Hernandez, Jose J.
    Sanchez Vazquez, Omar H.
    Topete Reyes, Jorge Fernando
    Parra Michel, Renato
    Lara Monterrubio, Ruben
    Valdez Avendano, Mario
    Rios Rios, Fabiola V.
    Alvarez, Carolina R.
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 65 - 65
  • [7] Risk Factors Associated with COVID-19 Lethality: A Machine Learning Approach Using Mexico Database
    Carvantes-Barrera, Alejandro
    Diaz-Gonzalez, Lorena
    Rosales-Rivera, Mauricio
    Chavez-Almazan, Luis A.
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2023, 47 (01)
  • [8] Risk Factors Associated with COVID-19 Lethality: A Machine Learning Approach Using Mexico Database
    Alejandro Carvantes-Barrera
    Lorena Díaz-González
    Mauricio Rosales-Rivera
    Luis A. Chávez-Almazán
    [J]. Journal of Medical Systems, 47
  • [9] Identifying Predictors of COVID-19 Mortality Using Machine Learning
    Wan, Tsz-Kin
    Huang, Rui-Xuan
    Tulu, Thomas Wetere
    Liu, Jun-Dong
    Vodencarevic, Asmir
    Wong, Chi-Wah
    Chan, Kei-Hang Katie
    [J]. LIFE-BASEL, 2022, 12 (04):
  • [10] Comparing machine learning algorithms for predicting COVID-19 mortality
    Khadijeh Moulaei
    Mostafa Shanbehzadeh
    Zahra Mohammadi-Taghiabad
    Hadi Kazemi-Arpanahi
    [J]. BMC Medical Informatics and Decision Making, 22