Machine Learning for Mortality Analysis in Patients with COVID-19

被引:29
|
作者
Sanchez-Montanes, Manuel [1 ]
Rodriguez-Belenguer, Pablo [2 ]
Serrano-Lopez, Antonio J. [2 ]
Soria-Olivas, Emilio [2 ]
Alakhdar-Mohmara, Yasser [3 ]
机构
[1] Univ Autonoma Madrid, Escuela Politecn Super, Madrid 28049, Spain
[2] Univ Valencia, Intelligent Data Anal Lab, ETSE, IDAL, Burjassot 46100, Spain
[3] Univ Valencia, Dept Physiotherapy, Valencia 46010, Spain
关键词
COVID-19; survival analysis; machine learning; feature importance; graphical models; TECHNOLOGIES; MODEL;
D O I
10.3390/ijerph17228386
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper analyzes a sample of patients hospitalized with COVID-19 in the region of Madrid (Spain). Survival analysis, logistic regression, and machine learning techniques (both supervised and unsupervised) are applied to carry out the analysis where the endpoint variable is the reason for hospital discharge (home or deceased). The different methods applied show the importance of variables such as age, O-2 saturation at Emergency Rooms (ER), and whether the patient comes from a nursing home. In addition, biclustering is used to globally analyze the patient-drug dataset, extracting segments of patients. We highlight the validity of the classifiers developed to predict the mortality, reaching an appreciable accuracy. Finally, interpretable decision rules for estimating the risk of mortality of patients can be obtained from the decision tree, which can be crucial in the prioritization of medical care and resources.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19
    Baker, Timothy B.
    Loh, Wei-Yin
    Piasecki, Thomas M.
    Bolt, Daniel M.
    Smith, Stevens S.
    Slutske, Wendy S.
    Conner, Karen L.
    Bernstein, Steven L.
    Fiore, Michael C.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19
    Timothy B. Baker
    Wei-Yin Loh
    Thomas M. Piasecki
    Daniel M. Bolt
    Stevens S. Smith
    Wendy S. Slutske
    Karen L. Conner
    Steven L. Bernstein
    Michael C. Fiore
    [J]. Scientific Reports, 13
  • [3] Predicting the mortality of patients with Covid-19: A machine learning approach
    Emami, Hassan
    Rabiei, Reza
    Sohrabei, Solmaz
    Atashi, Alireza
    [J]. HEALTH SCIENCE REPORTS, 2023, 6 (04)
  • [4] Machine learning prediction of COVID-19 mortality in cancer patients.
    Dienstmann, Rodrigo
    Menezes, Marcia
    e Silva, Matheus Costa
    Cruz, Heloisa
    Paes, Rafael
    da Silva, Jussaine Alves
    Messias, Anna Carolina R.
    De Marchi, Pedro
    Canedo, Jorge Alexandre
    De Melo, Andreia Cristina
    Jacome, Alexandre A.
    Reinert, Tomas
    Figueiredo Ferreira, Barbara Sodre
    Mathias, Clarissa
    Barrios, Carlos H.
    Ferreira, Carlos G. M.
    Ferrari, Bruno Lemos
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [5] Predicting the mortality of patients with Covid-19 A machine learning approach: Correspondence
    Ayyoubzadeh, Seyed Mohammad
    [J]. HEALTH SCIENCE REPORTS, 2023, 6 (09)
  • [6] Predicting Mortality in Hospitalized COVID-19 Patients in Zambia: An Application of Machine Learning
    Mulenga, Clyde
    Kaonga, Patrick
    Hamoonga, Raymond
    Mazaba, Mazyanga Lucy
    Chabala, Freeman
    Musonda, Patrick
    [J]. GLOBAL HEALTH EPIDEMIOLOGY AND GENOMICS, 2023, 2023
  • [7] Stratification of the Mortality Risk of COVID-19 Patients by using Machine Learning Algorithms
    Reuther, Janina
    Fomenko, Vlad
    Guelow, Karsten
    Reuther, Stefan
    Spreiter, Lucas
    Schmid, Stephan
    Mueller-Schilling, Martina
    [J]. INTERNIST, 2021, 62 (SUPPL 2): : 197 - 197
  • [8] Machine learning models for predicting hospitalization and mortality risks of COVID-19 patients
    de Holanda, Wallace Duarte
    Chaves e Silva, Lenardo
    Sobrinho, alvaro Alvares de Carvalho Cesar
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [9] Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19
    Yu, Limin
    Halalau, Alexandra
    Dalal, Bhavinkumar
    Abbas, Amr E.
    Ivascu, Felicia
    Amin, Mitual
    Nair, Girish B.
    [J]. PLOS ONE, 2021, 16 (04):
  • [10] Mortality Analysis of Patients with COVID-19 in Mexico Based on Risk Factors Applying Machine Learning Techniques
    Becerra-Sanchez, Aldonso
    Rodarte-Rodriguez, Armando
    Escalante-Garcia, Nivia I.
    Olvera-Gonzalez, Jose E.
    De la Rosa-vargas, Jose I.
    Zepeda-Valles, Gustavo
    Velasquez-Martinez, Emmanuel de J.
    [J]. DIAGNOSTICS, 2022, 12 (06)