A perturbation of the Cahn-Hilliard equation with logarithmic nonlinearity

被引:0
|
作者
Conti, Monica [1 ]
Gatti, Stefania [2 ]
Miranville, Alain [3 ,4 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-b, I-41125 Modena, Italy
[3] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang, Henan, Peoples R China
[4] Univ Poitiers, Equipe DACTIM MIS, Lab I3M & Lab Math & Applicat, Site Futuroscope Teleport 2 11 Blvd Marie & Pierre, F-86073 Poitiers 9, France
关键词
Cahn-Hilliard equation; Perturbation; Logarithmic nonlinear terms; Well-posedness; Strict separation property; Convergence to the Cahn-Hilliard equation; TRANSITIONS; SYSTEM;
D O I
10.1016/j.jde.2023.11.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this paper is to study a perturbation of the Cahn-Hilliard equation with nonlinear terms of logarithmic type. This new model is based on an unconstrained theory recently proposed in [5]. We prove the existence, regularity and uniqueness of solutions, as well as (strong) separation properties of the solutions from the pure states, also in three space dimensions. We finally prove the convergence to the Cahn-Hilliard equation, on finite time intervals. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:50 / 76
页数:27
相关论文
共 50 条
  • [21] Global and exponential attractors for a Cahn-Hilliard equation with logarithmic potentials and mass source
    Lam, Kei Fong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 312 : 237 - 275
  • [22] Pulled fronts in the Cahn-Hilliard equation
    Malomed, BA
    Frantzeskakis, DJ
    Nistazakis, HE
    Yannacopoulos, AN
    Kevrekidis, PG
    PHYSICS LETTERS A, 2002, 295 (5-6) : 267 - 272
  • [23] A Cahn-Hilliard equation with singular diffusion
    Schimperna, Giulio
    Pawlow, Irena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 779 - 803
  • [24] Stationary solutions for the Cahn-Hilliard equation
    Wei, JC
    Winter, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 459 - 492
  • [25] Local Dynamics of Cahn-Hilliard Equation
    Kashchenko, S. A.
    Plyshevskaya, S. P.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2019, 22 (01): : 93 - 97
  • [26] NONLINEAR ASPECTS OF THE CAHN-HILLIARD EQUATION
    NOVICKCOHEN, A
    SEGEL, LA
    PHYSICA D, 1984, 10 (03): : 277 - 298
  • [27] SPINODAL DECOMPOSITION FOR THE CAHN-HILLIARD EQUATION
    GRANT, CP
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (3-4) : 453 - 490
  • [28] Existence of solution to a Cahn-Hilliard equation
    Mourad, Ayman
    Taha, Zahraa
    ASYMPTOTIC ANALYSIS, 2022, 130 (3-4) : 387 - 408
  • [29] ENERGY METHODS FOR THE CAHN-HILLIARD EQUATION
    NOVICKCOHEN, A
    QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (04) : 681 - 690
  • [30] Convergence of solutions to Cahn-Hilliard equation
    Rybka, P
    Hoffmann, KH
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) : 1055 - 1077