Realization of photonic p-orbital higher-order topological insulators

被引:44
|
作者
Zhang, Yahui [1 ]
Bongiovanni, Domenico [1 ,2 ,3 ]
Wang, Ziteng [1 ]
Wang, Xiangdong [1 ]
Xia, Shiqi [1 ]
Hu, Zhichan [1 ]
Song, Daohong [1 ,4 ]
Jukic, Dario [5 ]
Xu, Jingjun [1 ]
Morandotti, Roberto [2 ,3 ]
Buljan, Hrvoje [1 ,6 ]
Chen, Zhigang [1 ,4 ]
机构
[1] Nankai Univ, Key Lab Weak Light Nonlinear Photon, TEDA Appl Phys Inst, MOE, Tianjin 300457, Peoples R China
[2] INRS EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[3] Nankai Univ, Sch Phys, Tianjin 300457, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[5] Univ Zagreb, Fac Civil Engn, A Kacica Miosica 26, Zagreb 10000, Croatia
[6] Univ Zagreb, Fac Sci, Dept Phys, Bijenicka C 32, HR-10000 Zagreb, Croatia
来源
ELIGHT | 2023年 / 3卷 / 01期
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Higher-band topology; Orbital degrees of freedom; Generalized chiral symmetry; Bulk polarization; Winding number; Breathing Kagome lattice; STATES;
D O I
10.1186/s43593-022-00039-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals. Despite tremendous efforts in engineering synthetic cold-atom, as well as electronic and photonic lattices to explore orbital physics, thus far high orbitals in an important class of materials, namely, higher-order topological insulators (HOTIs), have not been realized. Here, we demonstrate p-orbital corner states in a photonic HOTI, unveiling their underlying topological invariant, symmetry protection, and nonlinearity-induced dynamical rotation. In a Kagome-type HOTI, we find that the topological protection of p-orbital corner states demands an orbital-hopping symmetry in addition to generalized chiral symmetry. Due to orbital hybridization, nontrivial topology of the p-orbital HOTI is "hidden" if bulk polarization is used as the topological invariant, but well manifested by the generalized winding number. Our work opens a pathway for the exploration of intriguing orbital phenomena mediated by higher-band topology applicable to a broad spectrum of systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Higher-order topological insulators in a magnetic field
    Otaki, Yuria
    Fukui, Takahiro
    PHYSICAL REVIEW B, 2019, 100 (24)
  • [22] Higher-order topological Anderson insulators in quasicrystals
    Peng, Tan
    Hua, Chun-Bo
    Chen, Rui
    Liu, Zheng-Rong
    Xu, Dong-Hui
    Zhou, Bin
    PHYSICAL REVIEW B, 2021, 104 (24)
  • [23] Higher-order topological insulators in hyperbolic lattices
    Liu, Zheng-Rong
    Hua, Chun-Bo
    Peng, Tan
    Chen, Rui
    Zhou, Bin
    PHYSICAL REVIEW B, 2023, 107 (12)
  • [24] Pfaffian Formalism for Higher-Order Topological Insulators
    Li, Heqiu
    Sun, Kai
    PHYSICAL REVIEW LETTERS, 2020, 124 (03)
  • [25] Quadratic solitons in higher-order topological insulators
    V. Kartashov, Yaroslav
    CHAOS SOLITONS & FRACTALS, 2025, 194
  • [26] Higher-order topological insulators in synthetic dimensions
    Avik Dutt
    Momchil Minkov
    Ian A. D. Williamson
    Shanhui Fan
    Light: Science & Applications, 9
  • [27] Higher-order topological states in T-graphene and their realization in photonic crystals
    Yan, Liang
    Wang, Zhigang
    Yan, Jie-Yun
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (35)
  • [28] Simulating higher-order topological insulators in density wave insulators
    Lin, Kuan-Sen
    Bradlyn, Barry
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [29] Connecting higher-order topological insulators to lower-dimensional topological insulators
    Matsugatani, Akishi
    Watanabe, Haruki
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [30] Topological invariants for anomalous Floquet higher-order topological insulators
    Biao Huang
    Frontiers of Physics, 2023, 18