p-adic Eichler-Shimura maps for the modular curve

被引:0
|
作者
Camargo, Juan Esteban Rodriguez [1 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
Eichler-Shimura maps; p-adic modular symbols; modular curves; p-adic Hodge theory; COHOMOLOGY;
D O I
10.1112/S0010437X23007182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of Faltings's p-adic Eichler-Shimura decomposition of the modular curves via Bernstein-Gelfand-Gelfand (BGG) methods and the Hodge-Tate period map. The key property is the relation between the Tate module and the Faltings extension, which was used in the original proof. Then we construct overconvergent Eichler-Shimura maps for the modular curves providing 'the second half' of the overconvergent Eichler-Shimura map of Andreatta, Iovita and Stevens. We use higher Coleman theory on the modular curve developed by Boxer and Pilloni to show that the small-slope part of the Eichler-Shimura maps interpolates the classical p-adic Eichler-Shimura decompositions. Finally, we prove that overconvergent Eichler-Shimura maps are compatible with Poincare and Serre pairings.
引用
收藏
页码:1214 / 1249
页数:37
相关论文
共 50 条
  • [41] Eichler–Shimura theory for mock modular forms
    Kathrin Bringmann
    Pavel Guerzhoy
    Zachary Kent
    Ken Ono
    [J]. Mathematische Annalen, 2013, 355 : 1085 - 1121
  • [42] p-adic cocycles and their regulator maps
    Choo, Zacky
    Snaith, Victor
    [J]. JOURNAL OF K-THEORY, 2011, 8 (02) : 241 - 249
  • [43] P-ADIC L-FUNCTIONS AND P-ADIC PERIODS OF MODULAR-FORMS
    GREENBERG, R
    STEVENS, G
    [J]. INVENTIONES MATHEMATICAE, 1993, 111 (02) : 407 - 447
  • [44] Coleman maps and the p-adic regulator
    Lei, Antonio
    Loeffler, David
    Zerbes, Sarah Livia
    [J]. ALGEBRA & NUMBER THEORY, 2011, 5 (08) : 1095 - 1131
  • [45] MOCK MODULAR FORMS AS p-ADIC MODULAR FORMS
    Bringmann, Kathrin
    Guerzhoy, Pavel
    Kane, Ben
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2393 - 2410
  • [46] A p-adic Maass-Shimura operator on Mumford curves
    Longo, Matteo
    [J]. ANNALES MATHEMATIQUES DU QUEBEC, 2023, 47 (01): : 139 - 175
  • [47] SOME P-ADIC PROPERTIES OF EICHLER-SELBERG TRACE FORMULA
    KOIKE, M
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1975, 56 (JAN) : 45 - 52
  • [48] Arithmetic in the fundamental group of a p-adic curve. On the p-adic section conjecture for curves
    Pop, Florian
    Stix, Jakob
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 725 : 1 - 40
  • [49] Computations with classical and p-adic modular forms
    Lauder, Alan G. B.
    [J]. LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2011, 14 : 214 - 231
  • [50] MUMFORD CURVES COVERING p-ADIC SHIMURA CURVES AND THEIR FUNDAMENTAL DOMAINS
    Amoros, Laia
    Milione, Piermarco
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 1119 - 1149