Secrecy Capacity of IRS-Assisted Terahertz Wireless Communications With Pointing Errors

被引:8
|
作者
Khel, Ahmad Massud Tota [1 ]
Hamdi, Khairi Ashour [1 ]
机构
[1] Univ Manchester, Dept Elect & Elect Engn, Manchester M13 9PL, England
关键词
Quantization (signal); Absorption; Signal to noise ratio; Wireless communication; Eavesdropping; Physical layer security; Phase shifters; Colluding eavesdroppers; intelligent reflecting surface; non-colluding eavesdroppers; pointing errors; terahertz; INTELLIGENT; PERFORMANCE;
D O I
10.1109/LCOMM.2023.3246169
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This letter considers an intelligent reflecting surface (IRS)-assisted terahertz (THz) communication system in the presence of an arbitrary number of colluding/non-colluding eavesdroppers (Eves). Although the instantaneous channel state information (CSI) of the legitimate user (Bob) is assumed to be available, the IRS with discrete phase shifters cannot achieve optimal phase shifts, and thus Bob suffers from phase shift quantization errors. By taking into account the availability of the statistical CSI of Eves, pointing errors caused by highly-directional THz antennas, and the phase shift quantization errors, new expressions for the secrecy capacity in both cases of Eves are derived. The accuracy of the expressions is then verified by Monte-Carlo simulations. These expressions are used to investigate the impacts of pointing errors and quantization errors on the physical layer security of IRS-assisted THz systems in the presence of colluding and non-colluding Eves.
引用
收藏
页码:1090 / 1094
页数:5
相关论文
共 50 条
  • [21] Robust secrecy rate maximization in IRS-assisted cognitive radio networks
    Hu, Bing
    Liu, Jian
    Wu, Wei
    Sun, Zhixin
    PHYSICAL COMMUNICATION, 2022, 55
  • [22] Secrecy Rate Maximization for IRS-assisted MISOME Cognitive Radio System
    Zhang, Xin
    Li, An
    Guo, Tao
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1958 - 1963
  • [23] Joint Trajectory Design and Resource Allocation for IRS-Assisted UAV Communications With Wireless Energy Harvesting
    Liu, Zhixin
    Zhao, Songhan
    Wu, Qingqing
    Yang, Yi
    Guan, Xinping
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (02) : 404 - 408
  • [24] Deep reinforcement learning for IRS-assisted UAV covert communications
    Bi, Songjiao
    Hu, Langtao
    Liu, Quanjin
    Wu, Jianlan
    Yang, Rui
    Wu, Lei
    CHINA COMMUNICATIONS, 2023, 20 (12) : 131 - 141
  • [25] Deep Reinforcement Learning for Deception in IRS-assisted UAV Communications
    Olowononi, Felix O.
    Rawat, Danda B.
    Kamhoua, Charles A.
    Sadler, Brian M.
    2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
  • [26] IRS-Assisted High Mobility Communications Using OTFS Modulation
    Bora, Amit Sravan
    Phan, Khoa T. T.
    Hong, Yi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (02) : 376 - 380
  • [27] Deep Reinforcement Learning for IRS-Assisted UAV Covert Communications
    Songjiao Bi
    Langtao Hu
    Quanjin Liu
    Jianlan Wu
    Rui Yang
    Lei Wu
    ChinaCommunications, 2023, 20 (12) : 131 - 141
  • [28] Deep Reinforcement Learning for Deception in IRS-assisted UAV Communications
    Olowononi, Felix O.
    Rawat, Danda B.
    Kamhoua, Charles A.
    Sadler, Brian M.
    Proceedings - IEEE Military Communications Conference MILCOM, 2022, 2022-November : 763 - 768
  • [29] A Robust DCB Approach to IRS-Assisted Vehicular Communications with ICSI
    Pereira-Ruisanchez, Dariel
    Fresnedo, Oscar
    Perez-Adan, Darian
    Castedo, Luis
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [30] Performance analysis of a UAV-based IRS-assisted hybrid RF/FSO link with pointing and phase shift errors
    Malik, Suman
    Saxena, Prakriti
    Chung, Yeon Ho
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2022, 14 (04) : 303 - 315