A Micromechanical Data-Driven Machine-Learning Approach for Microstructural Characterization of Solder Balls in Electronic Packages Subjected to Thermomechanical Fatigue

被引:2
|
作者
Kurniawan, R. Rakhmat [1 ]
Sayed, Biju Theruvil [2 ]
Sari, Arif [3 ]
Paucar Luna, Jorge [4 ]
Kareem, A. K. [5 ]
Hussien, Naseer Ali [6 ]
机构
[1] Univ Islam Negeri Sumatera Utara Medan, Dept Comp Sci, Medan, Indonesia
[2] Dhofar Univ, Dept Comp Sci, Salalah, Oman
[3] Girne Amer Univ, Dept Management Informat Syst, Kyrenia, North Cyprus, Turkiye
[4] Univ Nacl Mayor San Marcos, Dept Acad, Fac Ingn Ind, Lima, Peru
[5] Al Mustaqbal Univ Coll, Biomed Engn Dept, Hillah, Babylon, Iraq
[6] Al Ayen Univ, Sci Res Ctr, Informat & Commun Technol Res Grp, Thi Qar, Iraq
关键词
Solder balls; thermomechanical fatigue; thermal cycling; machine learning; nanoindentation; HIGH-THROUGHPUT NANOINDENTATION; THERMAL FATIGUE; JOINTS; RELIABILITY; LIFE; MECHANISM; FAILURE; MODEL;
D O I
10.1007/s11664-023-10402-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A combination of nanoindentation mapping and machine-earning (ML) modeling has been used to characterize the microstructural changes in SnPb solder balls exposed to thermal cycling. The model facilitated the microstructural evaluation of solder bumps through the prediction of microscale variations of Young's modulus in the joint zone. The outcomes revealed that the micromechanical data-driven ML model precisely classified the microstructural constituents, i.e., beta-Sn and alpha-Pb, along with the grain boundary (GB) regions. However, some deviations were observed in GB recognition, when the elastic modulus gradient was not sharp enough. The predictive results also revealed that the increase in number of thermal cycles led to stiffening and grain coarsening of alpha-Pb, while the beta-Sn matrix mainly remained stable. Moreover, it was found that the thermal cycling intensified structural heterogeneity in the solder and sharpened the elastic modulus variations at the GB regions. In summary, the outcomes of this study demonstrate the prediction possibility of microstructural features in SnPb solder balls with a predefined thermal cycle numbers, and unfolded the relationship between morphological characteristics and microscale mechanical properties.
引用
收藏
页码:4614 / 4625
页数:12
相关论文
共 50 条
  • [1] A Micromechanical Data-Driven Machine-Learning Approach for Microstructural Characterization of Solder Balls in Electronic Packages Subjected to Thermomechanical Fatigue
    R. Rakhmat Kurniawan
    Biju Theruvil Sayed
    Arif Sari
    Jorge Paucar Luna
    A. K. Kareem
    Naseer Ali Hussien
    Journal of Electronic Materials, 2023, 52 : 4614 - 4625
  • [2] Personalized Tourist Recommender System: A Data-Driven and Machine-Learning Approach
    Shrestha, Deepanjal
    Tan, Wenan
    Shrestha, Deepmala
    Rajkarnikar, Neesha
    Jeong, Seung-Ryul
    COMPUTATION, 2024, 12 (03)
  • [3] Data-driven approach to predict the fatigue properties of ferrous metal materials using the cGAN and machine-learning algorithms
    Li, Si-Geng
    Chen, Qiu-Ren
    Huang, Li
    Chen, Min
    Wei, Chen-Di
    Yue, Zhong-Jie
    Liu, Ru-Xue
    Tong, Chao
    Liu, Qing
    ADVANCES IN MANUFACTURING, 2024, 12 (03) : 447 - 464
  • [4] Estimation of Thermomechanical Fatigue Lifetime of Ball Grid Solder Joints in Electronic Devices Using a Machine Learning Approach
    Chen, Tzu-Chia
    Opulencia, Maria Jade Catalan
    Majdi, Hasan Sh.
    Hammid, Ali Thaeer
    Sharma, Himanshu
    Sajjadifar, Sami
    Surendar, Aravindhan
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (07) : 3495 - 3503
  • [5] Machine learning aided modelling of thermomechanical fatigue of solder joints in electronic component assemblies
    Voet, Vincent
    Van Loock, Frederik
    De Fruytier, Christophe
    Simar, Aude
    Pardoen, Thomas
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 167
  • [6] DATA-DRIVEN DISEASE PROGRESSION PATTERNS OF BRAIN MORPHOLOGY IN SCHIZOPHRENIA: A MACHINE-LEARNING APPROACH
    Sone, D.
    Young, A.
    Shinagawa, S.
    Noda, Y.
    Iwata, Y.
    Tarumi, R.
    Ogyu, K.
    Honda, S.
    Tsugawa, S.
    Matsushita, K.
    Ueno, F.
    Hondo, N.
    Koreki, A.
    Kim, J.
    Caravaggio, F.
    Torres-Carmona, E.
    Mar, W.
    Chan, N.
    Plitman, E.
    Koizumi, T.
    Kato, H.
    Kusudo, K.
    de Luca, V.
    Gerretsen, P.
    Remington, G.
    Onaya, M.
    Uchida, H.
    Mimura, M.
    Shigeta, M.
    Graff-Guerrero, A.
    Nakajima, S.
    AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY, 2022, 56 (1_SUPPL): : 247 - 247
  • [7] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)
  • [8] Degradation Estimation and Prediction of Electronic Packages Using Data-Driven Approach
    Prisacaru, Alexandru
    Gromala, Przemyslaw Jakub
    Han, Bongtae
    Zhang, Gui Qi
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (03) : 2996 - 3006
  • [9] A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches
    Majd Kharfan
    Vicky Wing Kei Chan
    Tugba Firdolas Efendigil
    Annals of Operations Research, 2021, 303 : 159 - 174
  • [10] Seismic performance assessment of corroded RC columns based on data-driven machine-learning approach
    Xu, Ji-Gang
    Hong, Wan
    Zhang, Jian
    Hou, Shi-Tong
    Wu, Gang
    ENGINEERING STRUCTURES, 2022, 255