Data-driven approach to predict the fatigue properties of ferrous metal materials using the cGAN and machine-learning algorithms

被引:0
|
作者
Li, Si-Geng [1 ,2 ]
Chen, Qiu-Ren [2 ,3 ]
Huang, Li [2 ,3 ]
Chen, Min [1 ]
Wei, Chen-Di [1 ,2 ]
Yue, Zhong-Jie [1 ,2 ]
Liu, Ru-Xue [4 ]
Tong, Chao [3 ]
Liu, Qing [2 ,3 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Key Lab Light Weight Mat, Nanjing 210009, Peoples R China
[3] Mat Acad Jitri, Mat Bigdata & Applicat Div, Suzhou 215131, Jiangsu, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Fatigue life curve; Machine learning; Transfer learning; Conditional generative adversarial network (cGAN); LOW-CYCLE FATIGUE; NEURAL-NETWORKS; LIFE; STRAIN;
D O I
10.1007/s40436-024-00491-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stress-life curve (S-N) and low-cycle strain-life curve (E-N) are the two primary representations used to characterize the fatigue behavior of a material. These material fatigue curves are essential for structural fatigue analysis. However, conducting material fatigue tests is expensive and time-intensive. To address the challenge of data limitations on ferrous metal materials, we propose a novel method that utilizes the Random Forest Algorithm and transfer learning to predict the S-N and E-N curves of ferrous materials. In addition, a data-augmentation framework is introduced using a conditional generative adversarial network (cGAN) to overcome data deficiencies. By incorporating the cGAN-generated data, the accuracy (R2) of the Random Forest Algorithm-trained model is improved by 0.3-0.6. It is proven that the cGAN can significantly enhance the prediction accuracy of the machine-learning model and balance the cost of obtaining fatigue data from the experiment.
引用
收藏
页码:447 / 464
页数:18
相关论文
共 50 条
  • [1] Personalized Tourist Recommender System: A Data-Driven and Machine-Learning Approach
    Shrestha, Deepanjal
    Tan, Wenan
    Shrestha, Deepmala
    Rajkarnikar, Neesha
    Jeong, Seung-Ryul
    COMPUTATION, 2024, 12 (03)
  • [2] Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials
    Andrea Rovinelli
    Michael D. Sangid
    Henry Proudhon
    Wolfgang Ludwig
    npj Computational Materials, 4
  • [3] Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials
    Rovinelli, Andrea
    Sangid, Michael D.
    Proudhon, Henry
    Ludwig, Wolfgang
    NPJ COMPUTATIONAL MATERIALS, 2018, 4
  • [4] An Intelligent Data-Driven Approach for Electrical Energy Load Management Using Machine Learning Algorithms
    Akhtar, Shamim
    Bin Sujod, Muhamad Zahim
    Rizvi, Syed Sajjad Hussain
    ENERGIES, 2022, 15 (15)
  • [5] Chemical Composition Data-Driven Machine-Learning Prediction for Phase Stability and Materials Properties of Inorganic Crystalline Solids
    Atsumi, Taruto
    Sato, Kosei
    Yamaguchi, Yudai
    Hamaie, Masato
    Yasuda, Risa
    Tanibata, Naoto
    Takeda, Hayami
    Nakayama, Masanobu
    Karasuyama, Masayuki
    Takeuchi, Ichiro
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (09):
  • [6] Prediction of dialysis adequacy using data-driven machine learning algorithms
    Liu, Yi-Chen
    Qing, Ji-Ping
    Li, Rong
    Chang, Juan
    Xu, Li-Xia
    RENAL FAILURE, 2024, 46 (02)
  • [7] A Micromechanical Data-Driven Machine-Learning Approach for Microstructural Characterization of Solder Balls in Electronic Packages Subjected to Thermomechanical Fatigue
    Kurniawan, R. Rakhmat
    Sayed, Biju Theruvil
    Sari, Arif
    Paucar Luna, Jorge
    Kareem, A. K.
    Hussien, Naseer Ali
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (07) : 4614 - 4625
  • [8] A Micromechanical Data-Driven Machine-Learning Approach for Microstructural Characterization of Solder Balls in Electronic Packages Subjected to Thermomechanical Fatigue
    R. Rakhmat Kurniawan
    Biju Theruvil Sayed
    Arif Sari
    Jorge Paucar Luna
    A. K. Kareem
    Naseer Ali Hussien
    Journal of Electronic Materials, 2023, 52 : 4614 - 4625
  • [9] DATA-DRIVEN DISEASE PROGRESSION PATTERNS OF BRAIN MORPHOLOGY IN SCHIZOPHRENIA: A MACHINE-LEARNING APPROACH
    Sone, D.
    Young, A.
    Shinagawa, S.
    Noda, Y.
    Iwata, Y.
    Tarumi, R.
    Ogyu, K.
    Honda, S.
    Tsugawa, S.
    Matsushita, K.
    Ueno, F.
    Hondo, N.
    Koreki, A.
    Kim, J.
    Caravaggio, F.
    Torres-Carmona, E.
    Mar, W.
    Chan, N.
    Plitman, E.
    Koizumi, T.
    Kato, H.
    Kusudo, K.
    de Luca, V.
    Gerretsen, P.
    Remington, G.
    Onaya, M.
    Uchida, H.
    Mimura, M.
    Shigeta, M.
    Graff-Guerrero, A.
    Nakajima, S.
    AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY, 2022, 56 (1_SUPPL): : 247 - 247
  • [10] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)